Extracted from the NRCS "Engineering Field Handbook Part 650," Chapter 2, Estimating Runoff.

To read the complete document go to http://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21429

General

Time of concentration (T_c) is the time it takes for runoff to travel from the hydraulically most distant point of the watershed to the outlet. T_c influences the peak discharge. For the same size watershed, the shorter the T_c , the larger the peak discharge. This means that peak discharge has an inverse relationship with T_c .

Estimating time of concentration

T_c can be estimated for small rural watersheds using the following empirical relationship:

$$T_{c} = \frac{p_{c}^{0.8} \left[\frac{1000}{CN} - 9 \right]^{0.7}}{\frac{1140}{N} \times \frac{9}{5}}$$
(Eq. 2-5)

Where $T_c =$ time of concentration in hours, $\ell =$ flow length in feet, CN = runoff curve number, and

Y = average watershed slope in percent.

Figure 2-27 is a nomograph for solving equation 2-5. T_c is determined using watershed parameters ℓ , CN, and Y. Worksheet 2 can be used to compute T_c . Example 2-2 demonstrates this procedure. For watersheds where hydraulic conditions are such that velocities of water flow need to be estimated (urban areas, etc.), then T_c should be estimated using TR-55 methods.

Average watershed slope

The average watershed slope (Y) is the slope of the land and not the watercourse. It can be determined from soil survey data or topographic maps. Hillside slopes can be measured with a hand level, Locke level, or clinometer in the direction of overland flow. Average watershed slope is an average of individual land slope measurements.

The average watershed slope can be determined using the following relationship:

$$Y = \frac{100Cl}{A}$$
 (Eq. 2-6)

where Y = average watershed slope in percent,

C = total contour length in feet,

I = contour interval in feet, and

A = drainage area in square feet.

Flow length

Flow length (ℓ) is the longest flow path in the watershed from the watershed divide to the outlet. It is the total path water travels overland and in small channels on the way to the outlet. The flow length can be determined using a map

wheel or it can be marked along the edge of a paper and converted to feet.

Some typical examples of determining the flow length are shown below.

Natural Watershed. In this case, water flows from the watershed divide to a small channel, down the small channel to the main stream, and from there to the watershed outlet.

Watershed with Terraces. In this case, water flows from the divide to the terrace, along the terrace to the outlet or main stream, and then along the main stream to the outlet.

Direct runoff (Q), inches

	Cover description	Curve numbers for hydrologic soil group—				
Cover type	Treatment ²	Hydrologic condition ³	A	в	с	D
Fallow	Bare soil		77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	9
		Good	74	83	88	9
Row crops	Straight row	Poor	72	81	88	9
		Good	67	78	85	8
	Straight row + CR	Poor	71	80	87	9
		Good	64	75	82	8
	Contoured (C)	Poor	70	79	84	8
		Good	65	75	82	8
~	Contoured + CR	Poor	69	78	83	8
		Good	64	74	81	8
	Contoured & terraced (C&T)	Poor	66	74	80	8
		Good	62	71	78	8
	Contoured & terraced + CR	Poor	65	73	79	8
		Good	61	70	77	8
Small grain	Straight row	Poor	65	76	84	8
		Good	63	75	83	8
	Straight row + CR	Poor	64	75	83	8
		Good	60	72	80	8
	Contoured	Poor	63	74	82	8
		Good	61	73	81	8
	Contoured + CR	Poor	62	73	81	8
		Good	60	72	80	8
	Contoured & terraced	Poor	61	72	79	8
		Good	59	70	78	8
	Contoured & terraced + CR	Poor	60	71	78	8
		Good	58	69	77	8
Close-seeded	Straight row	Poor	66	77	85	8
or broadcast		Good	58	72	81	8
legumes or	Contoured	Poor	64	75	83	8
rotation		Good	55	69	78	8
meadow	Contoured & terraced	Poor	63	73	80	8
		Good	51	67	76	8

Table 2-3a.--Runoff curve numbers for cultivated agricultural lands¹

¹ Average runoff condition. ² Crop residue cover (CR) applies only if residue is on at least 5%

of the surface throughout the year. ³ Hydrologic condition is based on combination of factors that af-fect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover on the land surface (good \ge 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average in-filtration and tend to decrease runoff.

Curve number	l _a (in)	Curve number	l _a (in)
40	3.000	68	0.941
41	2.878	69	0.899
42	2.762	70	0.857
43	2.651	71	0.817
44	2.545	72	0.778
45	2.444	73	0.740
46	2.348	74	0.703
47	2.255	75	0.667
48	2.167	76	0.632
49	2.082	77	0.597
50	2.000	78	0.564
51	1.922	79	0.532
52	1.846	80	0.500
53	1.774	81	0.469
54	1.704	82	0.439
55	1.636	83	0.410
56	1.571	84	0.381
57	1.509	85	0.353
58	1.448	86	0.326
59	1.390	87	0.299
60	1.333	88	0.273
61	1.279	89	0.247
62	1.226	90	0.222
63	1.175	91	0.198
64	1.125	92	0.174
65	1.077	93	0.151
66	1.030	94	0.128
67	0.985	95	0.105

Buoyancy

A submerged body is acted on by a vertical, buoyant force equal to the weight of the displaced water.

 $\mathbf{F}_{\mathrm{B}} = \mathbf{V}\mathbf{w} \qquad (\mathrm{Eq. 3-2})$

F_B = buoyant force V = volume of the body w = unit weight of water

If the unit weight of the body is greater than that of water, there is an unbalanced downward force equal to the difference between the weight of the body and the weight of the water displaced. Therefore, the body will sink.

Flotation

If the body has a unit weight less than that of water, the body will float with part of its volume below and part above the water surface in a position so that:

 $W = Vw \qquad (Eq. 3-3)$

W = weight of the body V = volume of the body below the water surface; i.e., the volume of the displaced water w = unit weight of water

A check should be made of the stability of hydraulic structures as they will be affected by submergence and whether the weight of the structure will be adequate to resist flotation.

Porous materials, when submerged, have different net weights depending upon whether the voids are filled with air or water. Note the wide variation in the possible net weight of one cubic foot of treated structural timber weighing 55 pounds under average atmospheric moisture conditions and having 30 percent voids:

l cu. ft. of structural timber, 30 percent voids	Before Saturation	After Saturation
W = weight in air, lb. F_B = buoyant force when submerged, lb. W-F _B = weight when sub-	55 62.4	$55 + (0.30 \times 62.4) = 73.72$ 62.4
merged in water (net weight), 1b.	55 - 62.4 = -7.4	73.72 - 62.4 = 11.32

HYDRAULICS OF CULVERTS (2)

There are two major types of culvert flow: 1) Flow with inlet control, and 2) flow with outlet control. For each type, different factors and formulas are used to compute the hydraulic capacity of the culvert. Under inlet control, the slope, roughness and diameter of the culvert barrel, the inlet shape and the amount of headwater or ponding at the entrance must be considered. Outlet control involves the additional consideration of the elevation of the tailwater in the outlet channel and the length of the culvert.

The need for making involved computations to determine the probable type of flow under which a culvert will operate may be avoided by computing headwater depths from Exhibits 3-9 through 3-12 for both inlet control and outlet control and then using the higher value for design.

Both inlet control and outlet control types of flow are discussed briefly in the following paragraphs.

Culverts Flowing With Inlet Control

Inlet control means that the discharge capacity of a culvert is controlled at the culvert entrance by the depth of headwater (HW) and the shape of the entrance. Figure 3-7 shows inlet control flow for three types of culvert entrances.

In inlet control the length of the culvert barrel and outlet conditions are not factors in determining culvert capacity.

In all culvert design, headwater or depth of ponding at the entrance to a culvert is an important factor in culvert capacity. The headwater depth is the vertical distance from the culvert invert at the entrance to the energy line of the headwater pool (depth + velocity head). Because of the low velocities in most entrance pools, the water surface and the energy line at the entrance are assumed to coincide.

Headwater-discharge relationships for various types of circular culverts flowing with inlet control are based on laboratory research with models and verified in some instances by full-scale tests. Exhibits 3-9 and 3-10 give headwater-discharge relationships for round concrete and CM pipe culverts flowing with inlet control.

Example 3-16

It is desired to determine the maximum discharge of an existing 42-inch concrete culvert. The allowable headwater depth (HW) upstream is 8.0 feet and the slope of the culvert is 0.02 ft/ft. The culvert has a projecting entrance condition and there will be no backwater from downstream flow. Assume inlet control.

Figure 3-7 Culverts with inlet control

Using Exhibit 3-9, compute
$$\frac{HW}{D}$$

 $\frac{HW}{D} = \frac{8(12)}{42} = 2.29$

At 2.29 on scale 3, projecting entrance, draw a horizontal line to scale 1. From this point on scale 1 draw a connecting line between it and 42-inch diameter on scale 4. On scale 5 read Q = 128 cfs.

Check for inlet control

$$s_0 > s_n$$

where

> = symbol for "is greater than"

 $s_0 = installed slope of culvert$

sn = neutral slope - that slope of which the loss
of head due to friction is equal to the gain
in head due to elevation.

from Table 3-1, n(design) for concrete pipe = 0.012

from Exhibit 3-5, sheet 3 of 6

for Q = 128 cfs and D = 42 inches

 $s_n = 0.013$

therefore, the culvert is in inlet control, 0.02 >0.013

Example 3-17

Determine the required diameter of a corrugated metal culvert pipe to be installed in an existing channel. Q = 100 cfs, HW max. = 7.0 feet and s₀ = 0.03. There will be no backwater from downstream flow. Entrance to be mitered to conform to the slope of the embankment.

The solution of this problem must be made by trial pipe diameters and solution of HW by use of Exhibit 3-10.

Try D = 36"

draw a line through 36 inch on scale 4 and 100 cfs on scale 5 to an intersection with scale 1, then a horizontal line from scale 1 to scale 2, mitered inlet. On scale 2 read $\frac{HW}{D} = 3.8$,

then HW = 3.8(3) = 11.4 feet too high

Try D = 48''

read from scale 2, $\frac{HW}{D} = 1.45$

HW = 1.45(4) = 5.80 feet low

Try D = 42''

read from scale 2, $\frac{HW}{D} = 2.23$

HW = 2.23(3.5) = 7.8 feet high

From the foregoing trials, it will be necessary to install the 48-inch diameter pipe if the HW is to be 7.0 feet maximum.

Check for inlet control

 $s_0 > s_n$

from Exhibit 3-5, sheet 6 of 6

 $s_n = 0.017$

0.03 > 0.017 therefore, inlet control

Culverts Flowing With Outlet Control

Culverts flowing with outlet control can flow with the culvert barrel full for all or part of the barrel length. See Figure 3-8. If the entire cross section of the barrel is filled with water for the total length of the barrel, the culvert is said to be in full flow, Figure 3-8(a) and (b). One other type of outlet control is shown in Figure 3-8(c). For this condition, the elevation of the energy gradeline at the exit of the culvert is assumed at 3/4D. This is not an exact figure but it will give reasonable results.

The head, H, Figure 3-8(a), or energy required to pass a given quantity of water through a culvert with outlet control is made up of three parts. The parts are expressed in feet of water and include a velocity head, H_v , an entrance loss, H_e , and a friction loss, H_f . This energy is obtained from ponding of water at the entrance and is expressed by the equation

$$H = H_V + H_e + H_f$$
 (Eq. 3-13)

This equation in similar form has been derived in the section on Hydraulics of pipelines.

The entrance loss, H_e, depends upon the shape of the inlet edge. This loss is expressed as a coefficient, K_e, times the barrel velocity head. That is, H_e = K_e $\frac{v^2}{2g}$. Entrance loss coefficients, K_e, for various types of entrances when flow is in outlet control are given in Table 3-3.

Figure 3-8 Culverts with outlet control

Type of Structure and Design	of Entrance Coefficient H
Pipe, Concrete	
Projecting from fill,	socket end (groove-end) 0.2
Projecting from fill,	sq. cut end 0.5
Headwall or headwall a	
Socket end of pipe	(groove-end) 0.2
	0.5
Rounded (radius = 1	/12D) 0.2
Mitered to conform to	fill slope 0.7
*End-section conforming	to fill slope 0.5
Pipe, or Pipe-Arch, Corrugat	ed Metal
Projecting from fill Headwall or headwall a	no headwall)0.9 nd wingwalls
Square-edge	0.5
	fill slope 0.7
*End-section conforming	to fill slope 0.5
concrete, are the se From limited hydraul	ing to fill slope," made of either metal or ctions commonly available from manufacturer ic tests they are equivalent in operation t alet and outlet control.

The friction loss, H_f , is the energy required to overcome the roughness of the culvert barrel and is expressed by the equation

 $H_{f} = K_{p} \frac{L_{v}^{2}}{2g}$

K_p values can be taken from Exhibit 3-4.

Headwater depth can be expressed as an equation for all outlet control conditions, including all depths of tailwater, TW. This is done by designating the vertical distance from the culvert invert at the outlet to the elevation from which H is measured as h_0 .

$$HW = H + h_0 - s_0 l \qquad (Eq. 3-14)$$

When the elevation of the water surface in the outlet channel is equal to or above the top of the culvert opening at the outlet, Figure 3-9(a), h_0 is equal to the tailwater depth. If the tailwater elevation is below the top of the culvert opening at the outlet, Figure 3-9(b), h_0 , is then by definition 3/4D.

Headwater-discharge relationships for various types of circular culverts flowing with outlet control may be solved by the use of Exhibits 3-11 and 3-12. For a different roughness coefficient n_1 than that of the exhibit n, use the length scales shown with an adjusted length, ℓ_1 , calculated by the formula

$$\ell_1 = \ell \left(\frac{n_1}{n}\right)^2$$

3-36

Example 3-18

It is desired to install 50 feet of concrete culvert pipe, n = 0.012, in a drainage channel for a road crossing. Design Q is 80 cfs with a tailwater depth of 3.0 feet. Slope of the culvert will be 0.002 foot per foot. Maximum headwater depth (HW) is 5 feet.

```
from Equation 3-14

HW = H + h_0 - s_0 \ell \text{ or, } H = HW - h_0 + s_0 \ell

H = 5.0 - 3.0 + .002(50)

H = 2.1 \text{ feet}
```

and from Table 3-3 for a concrete pipe projecting from the fill with socket end upstream $K_e = 0.2$

entering Exhibit 3-11

draw a line between H = 2.1 feet on the head scale and Q = 80 cfs on the discharge scale. Then on the length scale for $K_e = 0.2$, draw a second line from the 50-feet mark through the intersection of the first line with the "turning line" and on to the pipe diameter scale. The diameter scale intersection is at approximately 39 inches, therefore, use a 42-inch pipe.

Erosive Culvert Exit Velocities

A culvert, because of its hydraulic characteristics, increases the velocity of flow over that in the adjacent channel. High velocities may be damaging just downstream from the culvert outlet and the erosion potential at this point should be considered in culvert design. In many cases it is necessary to riprap the channel for a short distance downstream of the culvert exit.

6. OPEN CHANNEL FLOW

The flow of water in an open channel differs from pipe flow in one important respect. See Figure 3-5. Open channel flow must have a free water surface, whereas pipe flow has none since water must fill the whole conduit.

Flow calculations for open channels are complicated by the fact that the position of the water surface is likely to change with respect to time and the cross-sectional area. Also the depth of flow, discharge, and slopes of the channel bottom and water surface are interdependent. Channel cross sections can vary from semicircular to the irregular forms of natural streams. The channel surface may vary from that of polished metal used in testing flumes to that of rough, irregular riverbeds. Moreover, the roughness in an open channel varies with the position of the free water surface. Therefore, the proper selection of friction coefficients is more uncertain for open channels than for pipes. In general, the treatment of open channel flow is somewhat more empirical than that of pipe flow, but the empirical method is the best available. If cautiously applied, it results in practical values.

Exhibit 3-8 Head loss coefficients for pipe entrances and bends (Sheet 1 of 2)

Exhibit 3-9 Headwater depth for concrete pipe culverts with inlet control (Ref. Hyd. Eng. Cir. No. 5, USBPR, 1965)

3-91

Exhibit 3-10 Headwater depth for CM pipe culverts with inlet control (Ref. Hyd. Eng. Cir. No. 5, USBPR, 1965)

Exhibit 3-11 Head for concrete pipe culverts flowing full with outlet control n = 0.012 (Ref. Hyd. Eng. Cir. No. 5, USBPR, 1965)

3-93

Exhibit 3-12 Head for CM pipe culverts flowing full with outlet control n = 0.024 (Ref. Hyd. Eng. Cir. No. 5, USBPR, 1965)

3-94

Section	Area a	Wetted Perimeter P	Hydraulic Rodius r	Top Width T
Tropezoid	bd+ed²	b+2dV≣ ² +/	<u>bd+2d2</u> b+2d122+1	b+2 ed
D Rectongle	bơ	b+2d	<u>bd</u> b+2d	Ь
Triongle	E d ²	2018=+1	<u>#d</u> 21/# ^{2+/}	220
Parabola	23 dT	T + 80 2 37	2072 378+802	<u>3 a</u> 2 d
Circle - 2 Fuli 2</td <td>$\frac{D^2}{\delta} \left(\frac{\pi \theta}{180} - \sin \theta \right)$</td> <td><u> TD0</u> 360</td> <td>45D (110-sin0)</td> <td>$\frac{D\sin\frac{\theta}{2}}{or 2\sqrt{d(D-d)}}$</td>	$\frac{D^2}{\delta} \left(\frac{\pi \theta}{180} - \sin \theta \right)$	<u> TD0</u> 360	45D (110-sin0)	$\frac{D\sin\frac{\theta}{2}}{or 2\sqrt{d(D-d)}}$
Circle->/2 full 3	$\frac{D^2}{8} \left(2\pi - \frac{\pi \theta}{180} + \sin \theta \right)$	<u> ТД (360-Ө)</u> 360	<u>45D</u> (217- <u>170</u> 17(360-9) (217- <u>180</u> +sin⊖)	$D\sin\frac{\theta}{2}$ or 21/d(D-d)
 ∠ Satisfactory app When d/T >0.25, 12 Θ=4sin⁻¹√d/D 13 Θ=4cos⁻¹√d/D 	proximation for the use p=1/2 VI6d2+T2 nsert 0 in degree	e interval O< t I sin h ⁻¹ & s in above equa	\$ 0.25 tions	

Table 4-1.--Volume-weight relationships

	Р	roperty	Saturated sample	Unsaturated sample	Ot	her useful relation	onships	
1	2	3	4.	5	6	7	8	9
	v _s	Volume of solids	G s	s Tw	V-(Va+Vw)	V(l-n)	V I+e	V _v e
	V.,	Volume of water	W. 7	, I	V _v -V _a	\$٧,	eSV I+e	eSV _s
onents	Va	Volume of air	Zero	V-(V _s +V _w)	V _v -V _w	(-\$)V _∨	<u>(!-S)e∀</u> +e	(I-S)eV
Volume components	۷.	Volume of voids	$\frac{W_{w}}{T_{w}}$	V- W s G ₅ Øw	۷-۷ _s	n¥ _s I∽n	_ <u>e,</u> ¥_ +e	eVs
Volume	v	Total volume of sample	۷ _s +۷ _w	Vs+Vw+Va	$\frac{W}{\mathcal{T}_{d}(1+w)}$	V _s I~n	V _s (l+e)	V _v (1+e) e
	n	Porosity	<u> </u>	V.V.	$1 - \frac{\mathcal{T}_{d}}{G_{s}\mathcal{T}_{w}}$	e I+e	J _{d^wsat} J _w	$I - \frac{V_{s}}{V}$
	e .	Void ratio		l _v l _s	$\frac{G_s \mathcal{J}_w}{\mathcal{J}_d} = 1$	<u>n</u> I-n	Tw-Tdwsat	$\frac{V}{V_s} - 1$
	Ws	Weight of solids	W-	-W _w	W 1+w	G _s Vð _w (I-n)	WwGs eS	v Ø _d
Weights for specific sample	₩"	Weight of water	· ₩-	-W _s	wW _s	STV	eWsS Gs	۷ " 7 "
tts for s sample	W	Total weight of sample	Ws	+₩ _w	₩ _s (I+w)	V7d(1+w)		
Weigh	Wsat	Saturated weight of sample	₩ _s +V _v <i>F</i> _w	\sum	W _s (l+w _{sat})	Vdd(1+wsat)		
	Wsub	Submerged weight of saturated sample	$W_s - V_s \sigma_w$	\searrow	$W_{s}\left(\frac{G_{s}-1}{G_{s}}\right)$	$V \mathcal{J}_{d}\left(\frac{G_{s}-I}{G_{s}}\right)$	W _{sat} -V3 _w	
	_	Dry unit	W _s	Ws	₩ V(I+w)	7 _m 1+w	nð _w Wsat	<u>G</u> _s 7 _w +e
nple e	To	weight	V _s +V _v	Vs+Vw+Va	G _s 𝒞 _w (1-n)	$\frac{e\mathcal{T}_{w}}{(1+e)w_{sat}}$	$\frac{G_s \mathcal{T}_w}{1 + \frac{wG_s}{S}}$	G _S T _W I+G _S w _{sat}
eights for samp of unit volume	đ	Moist unit weight	\searrow	<u>Ws+Ww</u> V	. W s(I+w)	7 _d (1+w)		
Weights for sample of unit volume	7 _{sat}	Saturated unit weight	Ws+Vv dw	\ge	$\begin{bmatrix} \frac{\mathbf{G}_{s}-\mathbf{I}}{\mathbf{G}_{s}\mathbf{w}_{sat}+\mathbf{I}} \end{bmatrix} \tilde{\mathbf{J}}_{w}^{*} + \tilde{\mathbf{J}}_{w}$	7 _d (1+w _{sat})	₫ _d +nð _w	$\frac{(G_{s}+e)7}{1+e}$
	7 _{sub}	Submerged unit weight	7 _{sa}	t-1,	$\begin{bmatrix} G_{s}^{-1} \\ G_{s}^{W}_{sat}^{+1} \end{bmatrix} \mathcal{T}_{w}$	$\mathcal{I}_{d} - (1 - n)\mathcal{I}_{w}$	$\mathcal{I}_{d} - \frac{\mathcal{I}_{d}}{G_{s}}$	$\begin{bmatrix} \frac{6}{s} - 1 \\ 1 + e \end{bmatrix}^2$
	3	Moisture content	\geq	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	₩ ₩ _s ~!	eS G _s	$\frac{n\$}{G_s(i-n)}$	$s\left[\frac{T_{\rm m}}{T_{\rm d}}-\frac{1}{G_{\rm g}}\right]$
Combined relations	wsat	Saturated moisture content	Wsat-Ws Ws		$\frac{nT_{w}}{T_{d}}$	$\frac{e\mathcal{T}_{w}}{(1+e)\mathcal{T}_{d}}$	$\frac{T_{\rm m}}{T_{\rm d}} = \frac{1}{G_{\rm s}}$	$\frac{\eta_{sat} - \eta_{d}}{\eta_{d}}$
Combined relations	s	Degree of saturation	<u>v</u> =i.0	$\frac{V_{w}}{V_{v}} < 1.0$	ww. vjaw	w Wsat	wG _s	$\frac{\mathbf{w}\mathbf{G}_{s}\mathbf{J}_{d}}{\mathbf{G}_{s}\mathbf{J}_{w}-\mathbf{J}_{d}}$
	Gs	Specific gravity		W _s sTw	$\frac{\mathcal{T}_{d}(1+e)}{\mathcal{T}_{w}}$	$\frac{T_d}{T_d(1-n)}$	$\frac{T_{d}}{T_{w}^{-} \frac{wT_{d}}{S}}$	<u></u>

Notes: 1. Weight of air is assumed to be zero.
2. Values of w, w_{sat}, S, and n are used as decimals.
3. w is the moisture content which corresponds to the particular W or γ being used.

Figure 4-14.---Unified classification and properties of soils.

		IMPORTANT PROPERTIES						
			Workability as	Permeability			Unified Soil	
Typical Names	Shear Strength	Compress- ibility	Construction Material	When Compacted	K Cm. Per Sec.	K Ft. Per Day	500	
Well graded gravels, gravel- sand mixtures, little or no fines.	Excellent	Negligible	Excellent	Pervious	K > 10 ⁻²	K > 30	GW	
Poorly graded gravels, gravel- sand mixtures, little or no fines.	Good	Negligible	Good	Very Pervious	K > 10 ⁻²	K > 30	GP	
Silty gravels, gravel-sand- silt mixtures.	Good to Fair	Negligible	Good	Semi-pervious to Impervious	K = 10 ⁻³ to 10 ⁻⁶	K = 3 to 3 x 10 ⁻³	GM	
Clayey gravels, gravel-sand- clay mixtures.	Good	Very Low	Good	Impervious	K - 10 ⁻⁶ to 10 ⁻⁸	$K = 3 \times 10^{-3}$ to 3 x 10 ⁻⁵	GC	
Well graded sands, gravelly sands, little or no fines.	Excellent	Negligible	Excellent	Pervious	K > 10 ⁻³	K > 3	SW	
Poorly graded sands, gravelly sands, little or no fines.	Good	Very Low	Fair	Pervious	K > 10 ⁻³	K > 3	ŞP	
Silty sands, sand-silt mixtures.	Good to Fair	Low	Fair	Semi-pervious to Impervious	K = 10 ⁻³ to 10 ⁻⁶	K = 3 to 3 x 10 ⁻³	SM	
Clayey sands, sand-clay mixtures.	Good to Fair	Low	Good	Impervious	K = 10 ⁻⁶ to 10 ⁻⁸	K = 3 x 10 ⁻³ to 3 x 10 ⁻⁵	sc	
Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.	Fair	Medium to High	Fair	Semi-pervious to Impervious	K = 10 ⁻³ to 10 ⁻⁶	K = 3 to 3 x 10 ⁻³	ML	
Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Fair	Medium	Good to Fair	Impervious	K = 10 ⁻⁶ to 10 ⁻⁸	$K = 3 \times 10^{-3}$ to 3 x 10 ⁻⁵	CL	
Organic silts and organic silty clays of low plasticity.	Poor	Medium	Fair	Semi-pervious to Impervious	K = 10 ⁻⁴ to 10 ⁻⁶	$K = 3 \times 10^{-3}$ to 3 x 10 ⁻³	OL	
Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.	Fair to Poor	High	Poor	Semi-pervious to Impervious	K =10 ⁻⁴ to 10 ⁻⁶	$K = 3 \times 10^{-1}$ to 3 x 10 ⁻³	мн	
Inorganic clays of high plasticity, fat clays.	Poor	High to Very High	Poor	Impervious	K = 10 ⁻⁶ to 10 ⁻⁸	$K = 3 \times 10^{-3}$ to 3 x 10^{-5}	СН	
Organic clays of medium to high plasticity, organic silts.	Poor	High	Poor	Impervious	K = 10 ⁻⁶ to 10 ⁻⁸	$K = 3 \times 10^{-3}$ to 3 x 10^{-5}	он	
Peat and other highly organic soils			Not Suitable	for Construction	'n		Pt	

Figure 4-I4.----Unified classification and properties of soils --- Continued.

	Standard		Re	BANKMENTS		Ability to	1	
Compaction Character- istics	Procter Unit Density (Lbs. per cu. ft.)	Type of Roller Desirable	Perme- ability	Compress- ibility	Resistance to Piping	Take Plastic Deformation Under Load Without Shearing	General Description & Use	Unifie Soil Classe
Good	125-135	Crawler tractor or steel wheeled & vibratory	High	Very Slight	Good	None	Very stable, pervious shells of dikes and dams.	GW
Good	115-125	Crawler tractor or steel wheeled & vibratory	High	Very Slight	Good	None	Reasonably stable, pervious shells of dikes and dams.	GP
Good with close control	120-135	Rubber-tired or sheepsfoot	Medium	Slight	Poor	Poor	Reasonably stable, not well suited to shells but may be used for impervious cores or blankets.	GM
Good	115-130	Sheepsfoot or rubber-tired	Low	Slight	Good	Fair	Fairly stable, may be used for impervious core.	GC
Good	110-130	Crawler tractor & vibratory or steel wheeled	High	Very Slight	Fair	None	Very stable, pervious sections, slope protection required.	sw
Good	100-120	Crawler tractor & vibratory or steel wheeled	High	Very Slight	Fair to Poor	None	Reasonably stable, may be used in dike with flat slopes.	SP
Good with close control	110-125	Rubber-tired or sheepsfoot	Medium	Slight	Poor to Very Poor	Poor	Fairly stable, not well suited to shells, but may be used for impervious cores or dikes.	SM
Good	105-125	Sheepsfoot or rubber-tired	Low	Slight	Good	Fair	Fairly stable, use for im- pervious core for flood control structures.	sc
Good to Poor. Close control essential	95-120	Sheepsfoot	Medium	Medium	Poor to Very Poor	Very Poor	Poor stability, may be used for embankments with proper control. *Varies with water content.	MĻ
Fair to Good	95-120	Sheepsfoot	Medium	Medium	Good to Fair	Good to Poor	Stable, impervious cores and blankets.	CL
Fair to Poor	80-100	sheepsfoot	Medium to Low	Medium to High	Good to Poor	Fair	Not suitable for embankments.	OL
Poor to Very Poor	70-95	Sheepsfoot	Medium to Low	Very High	Good to Poor	Good	Poor stability, core of hydraulic fill dam, not desirable in rolled fill construction.	мн
Fair to Poor	75-105	Sheepsfoot	Low	High	Excellent	Excellent	Fair stability with flat slopes, thin cores, blanket & dike sections.	сн
Poor to Very Poor	65-100	Sheepsfoot	Medium to Low	Very High	Good to Poor	Good	Not suitable for embankments.	· OH
		Do	Not Use for	Embankment	Construction	1		Pt

Figure 4-I4.---Unified classification and properties of soils --- Continued.

	constant IRABILITY Compacted Earth Lining	Foundation soil origin. Judgmer Bearing Value Good Good	s, being undis nt and testing Seepage Important	sturbed, are i must be use	Permanent Reservoir	alizations. Seepage Control Floodwater Retarding	Unified Soil Classe
Erosion C Resistance Ea 1 2 4 3	Compacted Earth Lining	Good		Seepage Not Important	Requirements for Permanent Reservoir	Floodwater Retarding	Soil
Resistance Ea	Earth Lining	Good		Not Important	Permanent Reservoir	Floodwater Retarding	
2 4 3	_		-	1	2 000 80	O-stall the stall !-	
4 3	_	Good			Positive cutoff or blanket	Control only within volume acceptable plus pressure relief if required.	GW
3			_	3	Positive cutoff or blanket	Control only within volume acceptable plus pressure relief if required.	GP
	4	Good	2	4	Core trench to none	None	GM
6	1	Good	1	6	None	None	GC
	-	Good	-	2	Positive cutoff or upstream blanket & toe drains or wells	Control only within volume acceptable plus pressure relief if required.	sw
7 if gravelly	T	Good to poor depending upon density	-	5	Positive cutoff or upstream blanket & toe drains or wells	Control only within volume acceptable plus pressure relief if required.	SP.
8 if gravelly 5	5 erosion critical	Good to Poor depending upon density	4	7	Upstream blanket & toe drains or wells	Sufficient control to prevent dangerous seepage piping.	SM
5	2	Good to Poor	3	8	None	None	SC
- 6	6 erosion critical	Very Poor; susceptible to liquefication	6, if satu- rated or pre-wetted	9	Positive cutoff or upstream blanket & toe drains or wells	Sufficient control to prevent dangerous seepage piping.	ML
9	3	Good to Poor	5	10	None	None	CL
_ 7	7 erosion critical	Fair to Poor; may have ex- cessive settlement	7	11	None	None	OL
-		Poor	8	12	None	None	MH
10	8 volume change critical	Fair to Poor	9	13	None	None	сн
_	_	Very Poor	10	14	None	None	OH
14-11 1	_	an en		REMOVE	FROM FOUNDATION		Pt

Table 4-I5.---Characteristics of compacted fill materials

Behavior	Relative Resistance to Failure (1) Greatest to (6) Least			Relative Characteristics				
Group	Shearing	Piping	Cracking	Permeability	Compressibility	Compaction		
1	2	3	4	5	6	7		
I	1		-	High	Very Slight	Good; crawler tractor; steel-wheeled roller.		
H	3	3	4	Low	Slight	Fair; sheepsfoot roller; rubber-tired roller.		
III	2	5	3	Medium	Slight	Good; rubber-tired roller; sheepsfoot roller.		
IV	3	6	6	Medium	Slight to Medium	Good to poor; sheepsfoot roller; close control essential.		
v	4	4	5	Low	Medium	Good to fair; sheepsfoot roller; close control essential.		
VI	5	2	2	Low	Medium to High	Good to fair; sheepsfoot roller; rubber-tired roller.		
VII	6	1	1	Low	High	Fair to poor; sheepsfoot roller.		
VIII	. 6	Variable	Variable	Medium-Low	Very High	Poor to very poor; sheepsfoot roller.		
IX	6	Variable	Variable	Medium-Low	Very High	Very poor; not suitable for embankments.		

Table 4-16.---Characteristics of foundation materials

Group		Seepage			
Symbol	Shear Strength	Sensitivity to Shock	Compressibility 2	Permeability	Control Requirements
1	2	3	4	5	6
GW	High	None	Very Slight	High	Positive Cutoff
GP	High	None	Very Slight	High	Positive Cutoff
GM	High	None	Very Slight	Medium-Low	Toe Trench to None
GC	High	None	Slight	Low	None
SW	High	None	Very Slight	High	U.S. Blanket & Toe Drainage
SP	Usually High ²	High for loose fine sand	Very Slight	High	cutoff U.S. Blanket & Toe Drainage; cutoff U.S.
SM	Usually High ¹	High for loose fine sand	Very Slight	Medium	Blanket & Toe Drainage; cutoff
SC	High	None	Slight	Low	None
ML	Medium	High for loose silts	Medium	Medium	Toe Trench
CL	Medium	None	Medium	Medium-Low	None
OL	Low	None	High	Low	None
MĤ	Low	High for loose silts	Very High	Low	None
СН	Medium to Low ²	None	Usually Very High	Low	None
OH	Low	None	Very High	Low	None
Pt	Very Low	None	Very High	Very High	Remove from foundation

Grassed Waterways

Part 650 Engineering Field Handbook

$$\tau_{e} = \gamma DS \left(1 - C_{F}\right) \left(\frac{n_{s}}{n}\right)^{2} \qquad (eq. 7-1)$$

where:

- γ = unit weight of water, 62.4 lb/ft³
- D = maximum flow depth in the cross section

 C_F = a vegetal cover factor

- $n_{\rm s}~$ = roughness associated with soil grain size
- n = Manning's roughness coefficient
- S = channel bed slope, ft/ft

The vegetal cover factor was developed based on experimental data and accounts for the cover density and uniformity (Temple 1980). It takes on values between 0 and 1, with 0 indicating no vegetal protection and 1 indicating the channel is completely protected from stress. The vegetal cover factor is a function of vegetation type and condition.

Perforated grid pavers -

Part 650 Engineering Field Handbook

The requirements for a stable foundation often conflict with the other requirements of location. Borings should be made and the location selected that has the best foundation conditions consistent with other site requirements. An unstable foundation material can considerably increase the cost of a pumping plant. A more intensive investigation before selecting the plant location often yields big dividends in reduced costs.

(2) Sump storage

Careful consideration should be given to providing storage for runoff within the diked area. The effective storage is that capacity in sump areas and ditches between the lowest elevation at which drainage is by gravity, or the cutoff elevation for the pumps, and the elevation at which flooding of the land to be protected begins. This is determined largely by the topography of the project area and the type of drainage system. A sump for a subsurface drainage system may be only a circular well 8 feet or less in diameter that has 2 feet of effective storage.

A sizeable area near the surface drainage system outlet that is lower than the area to be drained can be used for storage without crop loss. Borrow pits of appreciable size for dike construction and drainage ditches that have sufficient storage capacity can also be used.

Glossary

The glossary defines some of the specific terms used in this chapter. The listing is not intended to be complete, but should assist in providing a quick reference to many terms that may not be commonly understood.

AASHTO	American Association of State Highway Transportation Officials.
АСРА	American Concrete Pipe Association, Irving, TX.
AOS	Apparent opening size of geotextiles expressed in sieve size or millimeters, sometimes referred to as EOS (effective opening size). The property that indicates approximate largest particle that would pass through a geotextile. AOS O_{95} is the size at which 95 percent of the openings in the geotextile are smaller.
Aquifer	A geologic formation that holds and yields useable amounts of water. Aqui- fers can be classified as confined or unconfined.
Artesian aquifer	Aquifer that contains water under pressure as a result of hydrostatic head. For artesian conditions to exist, an aquifer must be overlain by a confining material of aquiclude and receive a supply of water. The free water surface stands at a higher elevation than the top confining layer.
ASTM	American Society for Testing and Materials.
Backfilling (drainage)	The replacement of the excavated material after drain placement and blind- ing or envelope installation.
Base drainage system	A permeable drainage blanket under a roadway.
Bedding	 A surface drainage method accomplished by plowing land to form a series of low narrow ridges separated by parallel dead furrows. The ridges are oriented in the direction of the greatest land slope (crowning or ridging). (2)Preparation of furrow-irrigated rowcropped field with wide, flattened ridges between furrows on which one or more crop rows are planted. (3) The process of laying a pipe or other conduit in a trench with the bottom shaped to the contour of the conduit or tamping earth around the conduit to form its bed. The manner of bedding may be specified to conform to the earth load and conduit strength. (4) Material placed under a pipe or other conduit for mechanical support.
Bedding angle	The acute angle of a V-groove in the bottom of a trench for support of pipe drains.
Bedding ditch	A dead furrow used as a surface drainage ditch in a bedding system.
Berm	(1) Strip or area of land, usually level, between the edge of spoil bank and edge of a ditch or canal. (2) A small embankment or ridge for controlling surface waterflow.

Best management practice (BMP)	Structural, nonstructural, and managerial techniques recognized to be the most effective and practical means to reduce surface and ground water contamination while still allowing the productive use of resources.
Blind drain	Type of drain consisting of an excavated trench, refilled with pervious materials (coarse sand, gravel, or crushed stones) through whose voids water percolates and flows toward an outlet (also called a trench drain).
Blind inlet	Surface water inlet to a drain in which water enters by percolation rather than through open flow conduits.
Blinding	Material placed on top of and around a drain tile or conduit to improve the flow of water to the drain and to prevent displacement backfilling of trench.
Buffer strip	A strip of grass or other close-growing perennial vegetation that separates a watercourse from an intensive land use area to prevent sediment entry into drainage channels (preferred term is filter strip).
Bullet (drainage)	Round-nosed cylindrical point of a mole drain plow which forms a cavity as the plow is drawn through the soil (also referred to as a torpedo).
Bypass ditch	A waterway for carrying water from a drainage area directly to a gravity outlet, bypassing any pumping plants.
Capillary fringe	A zone in the soil just above the water table that remains saturated or almost saturated. The extent depends upon the size-distribution of pores.
Capillary pressure head	Height water will rise by surface tension above a free water surface in the soil, expressed as length unit of water. Sometimes called <i>capillary rise</i> .
Capillary soil moisture	Preferred term is soil-water potential.
Centrifugal pump	Pump consisting of rotating vanes (impeller) enclosed in a housing and used to impart energy to a fluid through centrifugal force.
Chain trencher	An excavator that uses a chain with cutters attached to cut, remove, and deposit spoil to the side of the trench or on to a discharge conveyor.
Channel capacity	Flow rate in a ditch, canal, or natural channel when flowing full or at design flow.
Channel storage drainage	The volume of water that can be stored above the start pumping level in ditches or floodways without flooding cropland.
Check drain	Conventional drain altered by use of checks so that it can be used as a subirrigation system.
Chimney drain	Subsurface interceptor drain frequently used in dams, embankments, and similar construction to control seepage within the earthen structure. Chim- ney drains are constructed in near vertical orientation and discharge to outlets at lower elevations.

Clay	A soil separate consisting of particles less than $2\mu\text{m}$ in equivalent diameter.
Clay tile	Short lengths of pipe used for subsurface drains. The pipe is made from shale or clay.
Claypan	A dense, compact layer in the subsoil having a much higher clay content than the overlying material, separated by a sharply defined boundary. Clay- pans are usually hard when dry, and plastic and sticky when wet. Also, they usually impede the movement of water and air and the growth of plant roots.
Closed drain	Subsurface drain, tile, or perforated pipe, which may also receive surface water through surface inlets (no longer in common use).
Colloidal fines	Clay particles smaller than two microns.
Colloids	Negatively charged soil particles smaller than 1 μm in diameter.
Cone of depression or influence	The water table or piezometric surface, roughly conical in shape, produced by the extraction of water from a well.
Confined aquifer	An aquifer whose upper, and perhaps lower, boundary is defined by a layer of natural material that does not transmit water readily.
Controlled drainage	Regulation of the water table by means of control dams, check drains, or a combination of these, for maintaining the water table at a depth favorable to crop growth.
Conveyance loss	Loss of water from a channel or pipe during transport, including losses caused by seepage, leakage, evaporation, and transpiration by plants grow- ing in or near the channel.
Corrugated plastic pipe	Extruded plastic pipe with a corrugated wall and, when perforated, used for subsurface drains.
СМР	Corrugated metal pipe.
СРЕ ріре	Corrugated polyethylene drain pipe.
СРР	Corrugated plastic pipe.
Crack width	Space between the ends of adjacent clay or concrete drain tile.
Cradle	A support made of rigid material, such as concrete, wood, or steel, used in unstable soil to maintain grade, support tile or tubing, and prevent deflec- tion of the tubing.
Critical depth	Depth of flow in a channel at which specific energy is a minimum for a given discharge.

Critical velocity	Flow velocity at which a given discharge changes from tranquil to rapid or rapid to tranquil. That velocity in an open channel for which the specific energy is a minimum for a given discharge.
Cross slope	Slope of a field, measured at right angles to the row direction.
Crowning	The process of forming the surface of land into a series of broad, low ridges, separated by parallel field drains.
Cutoff drain	See Interceptor drain.
Darcy's law	A concept formulated by Henry Darcy in 1856 to describe the rate of flow of water through porous media. The rate of flow of water in porous media is proportional to the thickness of the bed and to the hydraulic gradient.
Dead load	A permanent load; a load that is constant in magnitude and position, usually for the design life.
Deep percolation	Water that moves downward through the soil profile below the root zone and is unavailable for use by plants.
Deflection	The change in the vertical inside diameter of a pipe caused by applied loads.
Diversion	A channel or dam constructed across a slope to intercept surface runoff and divert it to a safe or convenient discharge point. Usually placed above the area to be protected.
Double ditch or drain	See W-ditch.
Double-main system	Gridiron layout of subsurface drains with two closely spaced parallel main conduits.
Drain	Any closed conduit (perforated tubing or tile) or open channel used for removal of surplus ground or surface water.
Drain inlet structure	See Surface inlet.
Drain plow	A machine with a vertical blade, chisel point, and shield or boot used to install corrugated plastic tubing or drain tile.
Drain tile	Short length of pipe made of burned clay, concrete, or similar material, usually laid with open joints, to collect and remove subsurface water.
Drainable water	Water that readily drains from soil under the influence of gravity.
Drainage	Process of removing surface or subsurface water from a soil or area.
Drainage basin	The area from which runoff is collected and delivered to an outlet.

Drainage coefficient	Rate at which water is to be removed from a drainage area, expressed as depth per day or flow rate per unit of area. Sometimes called <i>drainage modulus.</i>
Drainage curves	Flow rate versus drainage area curves giving prescribed rates of runoff for different levels of crop protection.
Drainage pattern	(1) Arrangement of a system of surface or subsurface drains. (2) Arrangement of tributaries within a watershed.
Drainage pumping plant	Pumps, power units, and appurtenances for lifting drainage water from a collecting basin to an outlet.
Drainage system	Collection of surface and/or subsurface drains, together with structures and pumps, used to remove surface or ground water.
Drainage well	(1) A well pumped to lower water table. (2) Vertical shaft to a permeable substratum into which surface and subsurface drainage water is channeled (now illegal).
Drawdown	(1) Lowering of the water surface, water table, or piezometric surface resulting from the withdrawal of water from a well or drain. (2) Elevation of the static water level in a well minus the elevation of the pumping water level (at the well) at a given discharge rate (see Cone of depression).
Drop structure	Hydraulic structure for safely transferring water in a channel to a lower level channel without causing erosion.
Electrical conductivity	A measure of the ability of water to conduct electricity, which is used to estimate the amount of soluble salts in irrigation or drainage water, or solution extract of a soil.
Envelope	 Drain envelope—Generic name for materials placed on or around a drainage conduit, irrespective of whether used for mechanical support, hydraulic purposes (hydraulic envelope), or to stabilize surrounding soil material (filter envelope). Hydraulic envelope—Permeable material placed around a drainage conduit to improve flow conditions in the area immediately adjacent to the drain. Filter envelope—Permeable material placed around a drainage conduit to enhance water entry and stabilize the structure of the surrounding soil material. A filter envelope may initially allow some fines and colloidal material to pass through it and into the drain.
Estuarine inflows	The freshwater input necessary to provide nutrient input, sediment movement, circulation, and maintenance of brackish conditions for estrine organisms.
Evapotranspiration	The combination of water transpired from vegetation and evaporated from the soil and plant surfaces.

Exchange capacity	The total ionic charge of the absorption complex active in the adsorption of ions.
Exchangeable cation	A positively charged ion held on or near the surface of a solid particle by a negative surface charge of a colloid and which may be replaced by other positively charged ions in the soil solution.
Exchangeable sodium percentage	The fraction of the cation exchange capacity of a soil occupied by sodium ions.
Field capacity	Amount of water remaining in a soil when the downward water flow caused by gravity becomes negligible.
Field ditch	A ditch constructed within a field either for irrigation or drainage.
Field drain	A shallow-graded channel, usually having relatively flat side slopes, that collects surface water within a field.
Field lateral (drainage)	The principal ditch for draining adjacent fields or areas on a farm. Field laterals receive water from row drains, field drains, and field surfaces and carry it to drainage outlet channels.
Filter strip	Permanent vegetated strip between fields and receiving water or runoff conveyance structures to retard surface runoff and remove sediment, nutri- ents, or other contaminates from surface runoff.
Fin drain	A group of geocomposite drains designed with interior drainage paths to remove relatively large quantities of subsurface drainage water.
Finishing shoe	A mechanism attached to or part of excavating equipment that shapes the bottom of a trench and may convey drain tile or tubing to the bottom of the trench (also known as crummer, boot, tile/tubing chute, trench cleaner shoe).
Flashboard	Wood plank, generally held horizontally in vertical slots on the crest of a dam or check structure to control the upstream water level. Commonly called stoplog.
Float valve	A valve, actuated by a float, that automatically controls the flow of water.
Floating beam drain plow	A drain plow in which the installed pipe's depth and grade are controlled by the pitch of the shank and finishing shoe.
Flood control	Methods or facilities for controlling flood flows.
Flood gate	Mechanical gate to prevent backflow into a closed conduit during high water stages. Sometimes called <i>drainage gate.</i>
Flow line	Lowest level of flow in a conduit or channel.

Forced outlet	Basin or box outlet for a pipe drain in which the discharge will fill the basin and flow away over the ground surface. Used where a freefall outlet is not available.
Forebay	Reservoir or pond at the intake of a penstock, pipeline, or pump station.
Free discharge	Discharge of water from a conduit into the atmosphere without back pres- sure.
Free flow	Flow through or over a structure without back pressure.
Freeboard	Vertical distance between the maximum water surface elevation anticipated in design and the top of retaining banks, pipeline vents, or other structures, provided to prevent overtopping because of unforeseen conditions.
French drain	An excavated trench refilled with pervious materials through whose voids water flows toward an outlet (preferred term is <i>blind drain</i>).
Friction head	Energy required to overcome friction caused by fluid movement relative to the boundaries of a conduit or containing medium.
Friction slope	Friction head loss per unit length of conduit.
Frost action	Freezing and thawing of moist soil.
Frost depth	The depth to which a soil will freeze.
Gap graded	A gravel or soil with a significant range of particle sizes missing.
Gate	A device used to control the flow of water to, from, or in a pipeline, or open channel. It may be opened and closed by screw action, slide action, or hydraulic or pneumatic actuators.
Geocomposite	Geosynthetic materials for collecting and transporting water while main- taining soil stability.
Geomembrane	Sheet material intended to form an impervious barrier.
Geosynthetic	Synthetic material or structure used as an integral part of a project, struc- ture, or system. Within this category are subsurface drainage and water control materials, such as geomembranes, geotextiles, and geocomposites.
Geotextile	A woven or nonwoven thermoplastic sheet material intended to allow the passage of water, but not fines, and without collecting fines at the soil-textile interface.
Grade	(noun) Slope of a road, channel, or ground surface. (verb) To finish the surface of a canal bed, roadbed, top of embankment, or bottom of excava- tion.

Grade breaker	A special mechanical device attached to an earthmoving machine to change the normal gradeline.
Grade control	The process of maintaining constant and correct slope of a trench, ditch, terrace, canal, etc., using optical or laser surveying equipment.
Gradeline	A line established as a construction reference for ditches, terraces, etc.
Grade stabilizing structure	Structure used to control the bottom grade of a channel.
Grated inlet	A specific type of surface inlet to a pipe drain protected with a grate.
Gravitational water	Soil water that moves into, through, or out of the soil under the influence of gravity (preferred term is <i>soil-water potential</i>).
Gravity flow	Water flow that is not pumped, but flows because of the acceleration forces of gravity. Used in irrigation, drainage, inlets, and outlets.
Ground water	Water occurring in the zone of saturation in an aquifer or soil.
Ground water flow	Flow of water in an aquifer or soil. That part of the stream discharge that is derived from ground water.
Hardpan (soil)	A hardened soil layer, in the lower A or B horizon, caused by cementation of soil particles.
Head	The energy in the liquid system expressed as the equivalent height of a water column above a given datum.
Herringbone system	Arrangement of a pipe drainage system where laterals enter a main from both sides at angles less than 90 degrees.
Humid climates	Climate characterized by high rainfall and low evaporation potential. A region is usually considered as humid when precipitation averages more than 500 mm (20 in) per year.
Hydraulic conductivity	The ability of a porous medium to transmit a specific fluid under a unit hydraulic gradient; a function of both the characteristics of the medium and the properties of the fluid being transmitted. Usually a laboratory measure- ment corrected to a standard temperature and expressed in units of length/ time. Although the term hydraulic conductivity is sometimes used inter- changeably with the term permeability (water), the user should be aware of differences.
Hydraulic efficiency	(1) Efficiency with which a pump imparts energy to water or a turbine extracts energy from water. (2) A measure of the loss of energy when water flows through a hydraulic structure.
Hydraulic gradient	Change in the hydraulic head per unit distance.

Hydraulic radius	Cross-sectional area of a fluid stream of conduit divided by its wetted perimeter (length of its conduit surface in contact with fluid).
Hydrological profile	The profile of hydraulic conductivity values for soil layers or horizons located below the water table.
Hydrology	Science dealing with water of the world, including distribution, and cycle in nature.
Impermeable barrier layer	A soil stratum with a permeability less than 10 percent of the soil permeabil- ity between the layer and the groundwater surface.
Infiltration	The downward entry of water through the soil surface into the soil.
Infiltration rate	The quantity of water that enters the soil surface in a specified time interval. Often expressed in volume of water per unit of soil surface area per unit of time.
Inlet	(1) An appurtenance to deliver water to a pipeline system. (2) Point of defined inflow into a conduit or channel.
Innerflow	Having hydraulic flow capability in all directions within a strata or layer of material.
Instream flow requirements	The flow regime necessary to provide for the combined needs of fish, wild- life, recreation, navigation, hydropower production, and downstream con- veyance in a stream.
Intake	(1) Head-works of a conduit. (2) The place of diversion. (3) Water infiltra- tion into soil.
Interception	That portion of precipitation caught by vegetation and prevented from reaching the soil surface.
Interceptor drain	A channel located across the flow of ground water and installed to collect subsurface flow before it resurfaces. Surface water is also collected and removed.
Interflow	Water that infiltrates into the soil and moves laterally through the upper soil horizons until it returns to the surface, often in a stream channel.
Intermittent stream	Natural channel in which water does not flow continuously.
Internal drainage	Drainage of the soil profile; may be either natural or constructed.
Intrinsic permeability	The property of a porous material that expresses the ease with which gases or liquids flow through it (see Permeability).
Invert	Lowest element of the internal cross section of a channel or pipe.
Iron ochre	A reddish or yellowish brown gelatinous deposit formed by iron fixing bacteria. The gelatinous material hardens into a scale deposit with age.
-------------------	--
Isotropic (soil)	The condition of a soil or other porous media when physical properties, particularly hydraulic conductivity, are equal in all directions.
Joint spacing	Width of gap between adjacent rigid drain tiles through which water enters from the surrounding soil.
Joint wrapping	Placement of porous material over or around the pipe joints of subsurface drains to help prevent inflow of sediment.
Junction	(1) Point of intersection of two drains. (2) Accessory used to create a con- nection between two pipelines.
Junction box	Box, manhole, or other structure that serves to join two or more pipes.
Keel	Longitudinal strip attached at the center bottom of the shoe of a trenching machine to form the trench bottom.
Laminar flow	Flow in which there are no cross currents of eddies and where the fluid elements move in approximately parallel directions. Flow through granular material is usually laminar. Sometimes called <i>streamline</i> or <i>viscous flow</i> .
Land capability	Classification of soil units for the purpose of showing their relative suitabil- ity for specific uses, such as crop production with minimum erosion hazard.
Land leveler	A machine with a long wheel base used for land smoothing or leveling operations.
Land leveling	Process of shaping the land surface to a level surface. A special case of land grading.
Land smoothing	Shaping the land to remove irregular, uneven, mounded, broken, and jagged surfaces without using surveying information.
Land use planning	Development of plans for the use of land that will, over a long period, best serve the interest of the general public.
Landgrading	The operation of shaping the surface of land to predetermined grades so each row or surface slopes to a drain or is configured for efficient irrigation water applications. Also called <i>land forming</i> or <i>land shaping</i> (see Land <i>leveling</i> for a special case).
Laser leveling	Land leveling in which a stationary laser transmitter and a laser receiver on each earthmoving machine are used for grade control.
Laser receiver	An electronic device normally mounted on earthmoving machines, survey rods, or trenchers that receives signals from a laser transmitter and indi- cates to the operator or sends signals to control points on the machine to adjust the machine to follow the slope established by a laser transmitter.

Laser transmitter	A device that generates the collimated laser light beam.
Lateral	Secondary or side channel, ditch, or conduit. Also called <i>branch drain</i> or <i>spur.</i>
Leaching	Removal of soluble material from soil or other permeable material by the passage of water through it.
Leaching fraction	The ratio of the depth of subsurface drainage water (deep percolation) to the depth of infiltrated irrigation water (see leaching requirement).
Leaching requirement	Quantity of irrigation water required for transporting salts through the soil profile to maintain a favorable salt balance in the root zone for plant development.
Live load	A load that changes in magnitude and/or direction during the project design life.
Longitudinal drainage system	A drainage system parallel to a roadway, runway, or other structural component.
Longitudinal smoothing	Land smoothing operation where all soil movement is done parallel to crop row direction for the purpose of obtaining a grade.
Mole drain	Drain formed by pulling a vertical blade and a bullet-shaped cylinder through the soil.
Normal depth	Depth of flow in an open channel during uniform flow for the given condi- tions.
0&M	Operation and maintenance.
Observation well	Hole bored to a desired depth below the ground surface for observing the water table level.
Open ditch outlet	Excavated open channel for disposing of drainage water from a surface or subsurface drainage system, or for carrying flood water.
OSHA	Occupational Safety and Health Administration, the Federal agency respon- sible for safety and health concerns.
Outfall	Point where water flows from a conduit, stream, or drain.
Outlet	(1) An appurtenance to deliver water from a pipe system to the land, an individual sprinkler, lateral of sprinklers, or any surface pipe system. An outlet may consist of a valve, a riser pipe, and/or an outlet gate. (2) Point of water disposal from a stream, river, lake, tidewater, artificial drain, terrace, waterway, or diversion.
Outlet channel	Channel constructed primarily to carry water from manufactured struc- tures, such as terraces, subsurface drains, surface ditches, and diversions.

Outlet gate	A valve, usually a slide valve, that controls the flow of water from an outlet.
Parallel drainage system	A drainage system with parallel laterals or field ditches that are perpendicu- lar to the row drains.
Particle-size analysis	Determination of the various amounts of the different separates in a soil sample, usually by sedimentation, sieving, or micrometry.
Perched water table	A localized condition of free water held in a pervious stratum because of an underlying impervious stratum and seperated from deeper aquifers.
Percolating water	Subsurface water that flows through the soil or rocks (see Seepage).
Percolation	Downward movement of water through the soil profile or other porous media.
Percolation rate	The rate at which water moves through porous media, such as soil.
Perforated pipe	Pipe designed to discharge or accept water through small, multiple, closely spaced orifices placed in its circumference.
Permeability	(1) (qualitative) The ease with which gases, liquids, or plant roots penetrate or pass through a layer of soil or porous media. (2) (quantitative) The spe- cific soil property designating the rate at which gases and liquids can flow through the soil or porous media.
Permeameter	Device for containing the soil sample and subjecting it to fluid flow to measure permeability or hydraulic conductivity.
Permissible velocity	Highest water velocity in a channel or conduit that does not cause erosion.
Permittivity	A measure of the ability of a geotextile to permit waterflow perpendicular to its plane. (The volumetric flow rate of water per unit cross–sectional area per unit head.)
Phreatic surface	The level of zero (atmospheric) pressure at water table surface.
Piezometer	Tube for measuring the combined elevation and pressure head or potential of a fluid.
Piezometric head	Combined elevation and pressure head as measured from a reference plane (see Static head).
Piezometric line or surface	Line or surface having equal piezometric head.
Pipe drain	Any circular subsurface drain, including corrugated plastic pipe and con- crete or clay tile.
Pipe drainage system	Random, systematic or interceptor layout of subsurface drains, including the outlet, drain lines, and related structures.

Pipe or tile depth	Vertical distance from the soil surface to the gradeline or bottom (invert) of a pipe or drain tile.
Pipe stretch	Associated with corrugated plastic pipe. Pipe strength is reduced if the pipe is installed in a stretched condition.
Pore size index	The characteristic pore opening size, expressed in mm or sieve size, of a geotextile where 90 percent of the openings in the geotextile are smaller (the O_{90} value).
Porosity	(1) (aquifer) The sum of the specific yield and the specific retention. (2) (soil) The volume of pores in a soil sample divided by the combined volume of the pores and the soil of the sample.
Pre-ripping	The practice of making a pass with a drain plow without installing tubing to locate any rocks and to reduce draft. Typically, the pre-ripping depth is somewhat less than the installation depth.
Preferential flow	Flow into and through porous media or soil by way of cracks, root holes, and other paths of low resistance rather than uniformly through the whole media.
Pump drainage	Drainage system in which pumps are used to lift water into an outlet.
Pump efficiency	Ratio of the water power produced by the pump to the power delivered to the pump by the power unit.
Pump submergence	Vertical distance between surface of the water supply and the inlet of the pump.
Pumped well drain	Well drilled into an aquifer that is pumped to lower the water table.
Pumping plant or station	A complete installation of one or more pumps together with all necessary appurtenances, such as power units, sumps, screens, valves, motor con- trols, motor protection devices, fences, and shelters.
Quick condition	Condition in which water flows through the soil material (upward or hori- zontally) with sufficient velocity to significantly reduce the bearing capacity of the material through a decrease in intergranular pressure. Sometimes called <i>quicksand</i> .
Radial flow	(1) Flow from a source or to a sink along radial lines. (2) Direction of flow in a centrifugal pump.
Radial-flow pump	A centrifugal pump that uses diffuser vanes to transform the velocity head into pressure head. Commonly called a <i>turbine pump</i> .
Radius of influence	Maximum distance from a well at which drawdown is significant (see Cone of depression).
Rainfall intensity	Rate of rainfall for any given time interval, usually expressed in units of depth per time.

Random drainage system	Surface or subsurface drainage system of irregular pattern used on depressional topography.
Receiving water	Distinct bodies of water, such as streams, lakes, or estuaries, that receive runoff or wastewater discharge.
Recharge	Process by which water is added to the zone of saturation to replenish an aquifer.
Recharge area	Land area over which water infiltrates and percolates downward to replen- ish an aquifer. For unconfined aquifers, the area is essentially the entire land surface overlaying the aquifer and for confined aquifers, the recharge area may be a part of or unrelated to the overlaying area.
Rectangular weir	A channel structure having a rectangular flow notch.
Relief drain system	A system of subsurface drain tiles or tubing, installed within an area having a high water table, to lower the water table or maintain it at a given level.
Relief drain	Any product or construction that accelerates the removal of drainable subsurface water to lower a water table.
Relief well	Shallow well, pit, or bore to relieve hydrostatic pressure by allowing waterflow from a confined aquifer or from saturated soil.
Resistance coefficient	A quantitative expression of hydraulic resistance exerted by a conduit boundary on fluid flow. Examples are n , C , and f in the Manning, Chezy, and Darcy-Weisbach equations for velocity of uniform flow (also called <i>roughness coefficient</i>).
Resource management system	A combination of conservation practices and management identified by land and water uses that, when implemented, prevents resource degrada- tion and permits sustained use of soil, water, air, plants, and animal re- sources.
Riverside drain	Drain adjacent to a riverbed to a point downstream where water can be discarded above the mean high water level of the river.
Root zone	Depth of soil that plant roots readily penetrate and in which the predomi- nant root activity occurs.
Roughness coefficient	See Resistance coefficient.
Row drain	A small drain constructed with a plow or similar tillage implement to pro- vide drainage into field drains or field laterals. Sometimes locally called <i>plow drain, quarter drain, header ditch,</i> or <i>annual drain.</i>
Runoff	The portion of precipitation, snowmelt, or irrigation that flows over the soil, eventually making its way to surface water supplies.
Runoff coefficient	Ratio of peak runoff rate to rainfall intensity.

Runoff duration	Elapsed time between the beginning and end of a runoff event.
Saline-sodic soil	Soil containing sufficient exchangeable sodium to interfere with the growth of most crops and containing appreciable quantities of soluble salts. The exchangeable sodium percentage is greater than 15, the electrical conductivity of the saturation extract is greater than 4 mS/cm (0.01 mho/in), and the exchangeable sodium percentage is less than 15.
Saltation	Soil movement by water or wind where particles skip or bounce along the streambed or soil surface.
Sand	Soil particles ranging from 50 to 200 μ m in diameter. Soil material containing 85 percent or more particles in this size range.
Sand lens	Lenticular band of sand in distinctly sedimentary banded material.
Saturated flow	Flow of water through a porous material under saturated conditions.
Saturation point	The water content at which a soil or aquifer will no longer absorb any water without losing an equal amount.
Seepage	The movement of water into and through the soil from unlined canals, ditches, and water storage facilities.
Semiarid climate	Climate characterized as neither entirely arid nor humid, but intermediate between the two conditions. A region is usually considered as semiarid when precipitation averages between 250 mm (10 in) and 500 mm (20 in) per year.
Side inlet (drainage)	A facility to safely convey surface water into a lateral or main drain.
Side slopes	Slope of the sides of a channel or embankment, horizontal to vertical distance (written 2:1).
Silt	(1) A soil separate consisting of particles between 2 and 50 μ m in diameter. (2) (colloquial) Deposits of sediment that may contain soil particles of all sizes.
Silt bar	A deposition of sediment in a channel.
Sink	A relatively small surface depression that allows surface drainage to enter the subsurface soil water system.
Siphon drain	Sealed drain where atmospheric pressure forces water over an intervening elevation into an outlet at a level lower than the inlet.
Sodic soil	A nonsaline soil containing sufficient exchangeable sodium to adversely affect crop production and soil structure. The exchangeable sodium per- centage is greater than 15 and the electrical conductivity of the saturation extract is less than 4 mS/cm (0.01).

Sodium adsorption ratio (SAR)	The proportion of soluble sodium ions in relation to the soluble calcium and magnesium ions in the soil water extract (can be used to predict the exchangeable sodium percentage).
Sodium percentage	Percentage of total cations that is sodium in water or soil solution.
Soil	The unconsolidated minerals and material on the immediate surface of the Earth that serves as a natural medium for the growth of plants.
Soil aeration	Process by which air and other gases enter the soil or are exchanged.
Soil compaction	Consolidation, reduction in porosity, and collapse of the structure of soil when subjected to surface loads.
Soil conservation	Protection of soil against physical loss by erosion and chemical deteriora- tion by the application of management and land use methods that safeguard the soil against all natural and human-induced factors.
Soil erodibility	A measure of the soil's susceptibility to erosional processes.
Soil erosion	Detachment and movement of soil from the land surface by wind or water.
Soil horizon	A layer of soil differing from adjacent genetically related layers in physical, chemical, and biological properties or characteristics.
Soil organic matter	Organic fraction of the soil, including plant and animal residue in various stages of decomposition, cells and tissues of soil organisms, and substances synthesized by the soil population.
Soil profile	Vertical section of the soil from the surface through all its horizons into the parent material.
Soil series	The lowest category of U.S. system of soil taxonomy. A conceptualized class of soil bodies having similar characteristics and arrangement in the soil profile.
Soil structure	The combination or arrangement of primary soil particles, into secondary particles, units, or peds that make up the soil mass. These secondary units may be, but usually are not, arranged in the profile in such a manner as to give a distinctive characteristic pattern. The principal types of soil structure are platy, prismatic, columnar, blocky, and granular.
Soil texture	Classification of soil by the relative proportions of sand, silt, and clay present in the soil.
Soil water	All forms of water in the soil.
Soil-water characteristic curve	Soil-specific relationship between the soil-water matric potential and soil- water content.

Soil-water potential	The amount of work that must be done per unit quantity of pure water to transport reversibly and isothermally an infinitesimal quantity of water from a pool of pure water at a specified elevation at atmospheric pressure to the soil water at the point under consideration.
Specific retention	Amount of water that a unit volume of porous media or soil, after being saturated, will retain against the force of gravity (compare to specific yield).
Specific yield	Amount of water that a unit volume of porous media or soil, after being saturated, will yield when drained by gravity (compare to specific retention).
Spillway	Conduit through or around a dam or dike for the passage of excess water.
Spoilbank	Excavated soil piled along a canal, ditch, or basin.
Stabilized grade	Slope of a channel at which neither erosion nor deposition occurs.
Staff gage	Graduated scale, generally vertical, from which the water surface elevation may be read.
Stage	Elevation of a water surface above or below an established datum gauge height.
Start trench	The excavation performed at the beginning of the installation of a drain to establish grade and permit entry to install tubing, outlet pipe, or junctions (also known as <i>start hole</i> or <i>pilot hole</i>).
Static head	The potential energy resulting from elevation differences (see Head).
Static lift	Vertical distance between source and discharge water levels in a pump installation.
Steady flow	Open channel flow in which the rate and cross-sectional area remain con- stant with time at a given station.
Storage coefficient	See Specific yield.
Stratified soils	Soils that are composed of layers usually varying in permeability and tex- ture.
Stretch (drainage)	The percent increase in length of drain tubing caused by bending or tension forces during installation.
Subgrade	Earth material beneath a subsurface drain or foundation.
Subirrigation	Application of irrigation water below the ground surface by raising the water table to within or near the root zone.
Subsoiling	Tillage operation to loosen the soil below the tillage zone without inversion and with a minimum of mixing with the tilled zone.

Subsurface drain	Subsurface conduits used primarily to remove subsurface water from soil. Classifications of subsurface drains include pipe drains, tile drains, and blind drains.
Subsurface drain storage	Volume of water that can be stored in the subsurface pipeline without reducing the effectiveness of the pipe or tile drain.
Subsurface water	Water beneath the ground or pavement surface. Sometimes referred to as ground water or soil water.
Suction lift	Vertical distance between the elevation of the surface of the water source and the center of the pump impeller.
Surface collecting drains	Ditches used to remove pondages, and move water more rapidly into outlet drains.
Surface drainage	The diversion or orderly removal of excess water from the surface of land by means of improved natural or constructed channels, supplemented when necessary by shaping and grading of land surfaces to such channels.
Surface inlet	Structure for diverting surface water into an open ditch, subsurface drain, or pipeline.
Surface runoff	Precipitation, snowmelt, or irrigation in excess of what can infiltrate and be stored in small surface depressions.
Surface sealing	Reorienting and packing of dispersed soil particles in the immediate surface layer of soil and clogging of surface pores resulting in reduced infiltration.
Surface soil	The uppermost part of the soil, ordinarily moved in tillage, or its equivalent in uncultivated soils, ranging in depth from 10 to 20 cm (4 to 8 in). Sometimes called <i>soil management zone.</i>
Surface storage	Sum of detention and channel storage excluding depression storage. Repre- sents at any given moment the total water enroute to an outlet from an area or watershed.
Surface water	Water flowing or stored on the Earth's surface.
Swelling (soil)	Physical expansion of the soil mass in an expanding type clay, usually caused by an increase in water content.
Three-edge bearing test	A test used to determine the strength of concrete pipe, stated in force per unit length.
Tidal gate	Gate that allows flow of drainage water seaward at low tide and prevents return flow at high tide. Sometimes called a <i>sea gate.</i>
Tile alignment	Degree to which the centerline of a tile falls in line with the centerline of adjacent tiles.

Tile cradle	Support laid underneath a tile line in unstable soil to keep horizontal and vertical alignment of the tile line.
Tile density	Quality of a tile that determines its crushing strength and its ability to resist water absorption and damage by freezing and thawing.
Tile drain	Drain constructed by laying drain tile with unsealed joints in the bottom of a trench that is then refilled. Tile is generally constructed of clay or con- crete.
Tile joint	Opening between two drain tiles through which water from the surrounding soil flows (compare with crack width).
Tile probe	A hand tool consisting of a rod with a tee handle on one end and an en- larged point on the other end. The tool is pushed or driven into the soil to locate pipe, tile, tubing, or a trench.
Top width	Horizontal distance across the top of a ditch or embankment.
Torpedo	Channel forming head of a mole plow (preferred term is bullet).
Total dynamic head	Head required to pump water from its source to the point of discharge; equal to the static lift plus head losses in pipes and fittings plus the increase in velocity head.
Total suction head	Head required to lift water from the water source to the centerline of the pump plus velocity head, entrance losses, and friction losses in suction pipeline.
Trailing plug	Plug following the mole plow torpedo, smoothing and strengthening the wall of the mole channel (see Mole drain or Bullet).
Transverse drainage system	A drainage system usually at some angle to a roadway.
Trench box	A box-like piece of equipment placed in a trench to prevent collapse of the sides of the trench and thereby provide safe working conditions.
Turbine pump	A type of pump having one or more stages, each consisting of an impeller on a vertical shaft, surrounded by stationary and usually symmetrical guide vanes. Combines the energy-imparting characteristics of axial-flow and propeller pumps.
Twin ditch	See W-ditch.
Unavailable soil water	That portion of water in a soil held so tightly by adhesion and other soil forces that it cannot be absorbed by plants rapidly enough to sustain growth. Soil water at permanent wilting point.
Unconfined aquifer	An aquifer whose upper boundary consists of relatively porous natural material that transmits water readily and does not confine water. The water level in the aquifer is the water table.

Underlayment	Something laid underneath a drain pipe, such as gravel or stone bedding material.
Unsaturated flow	Movement of water in soil in which the pores are not completely filled with water.
Unsaturated zone	That part of the soil profile in which the voids are not completely filled with water.
USBR	United States Bureau of Reclamation, U.S. Department of the Interior.
USCS	Unified Soil Classification System.
Vadose zone	Zone of unsaturated soil that extends from the soil surface to the ground water table.
Velocity head	Head or energy resulting from the velocity of a moving fluid; equal to the square of the mean velocity divided by twice the gravitational acceleration.
Vent	An appurtenance to a pipeline that permits the passage of air to or from the pipeline.
Vertical drain	Vertical shaft to a permeable substratum into which surface and subsurface drainage water is channeled.
W-ditch	Two closely spaced, parallel, single channels having the spoil from con- struction placed between them. To permit unimpeded runoff into them from surrounding lands. Sometimes called a W-drain.
Water table	The upper limit of a free water surface in a saturated soil or underlying material.
Water table management	The control of ground water levels by regulating the flow of water in the controlled drainage and subirrigation modes.
Weir	(1) Structure across a stream to control or divert the flow. (2) Device for measuring the flow of water. Classification includes sharpcrested or broadcrested with rectangular, trapezoidal, or triangular cross section.
Weir head	Vertical distance from the crest of a weir to the water surface in the forebay above the weir, not including the velocity head of approach.
Weir pond or box	Pond upstream from a weir generally used to reduce the velocity of approach and allow for full contraction of flow for measurement purposes. Also acts as a trap.
Well casing	Pipe installed within a borehole to prevent collapse of sidewall material, to receive and protect pump and pump column, and to allow waterflow from the aquifer to pump intake.

Part 650 Engineering Field Handbook

Well development	The process of removing fine formation materials or materials introduced during well construction from the well intake zone for the purpose of stabi- lizing and increasing the permeability of the well intake zone and the filter pack material.
Well efficiency	Ratio of theoretical drawdown to measured drawdown. Theoretical draw- down is estimated from adjacent observation well data obtained during well test.
Wetted perimeter	Length of the wetted contact between a conveyed liquid and the open channel or closed conduit conveying it, measured in a plane at right angles to the direction of flow.
Wheel trencher	An excavator that uses a rigid round wheel with attached buckets and cutters to carry spoil out of the trench. It may include a conveyor or slide to deposit spoil to one or both sides of the trench.