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Chapter 2, fig. 2.3, Theoretical Diesel Cycle 

The cycle shown in Figure 2.3 is Dr. Rudolph Diesel's original theoretical cycle for the diesel engine. The 
cycle is identical to the Otto cycle, except for the processes between points 2 and 4. Also, the pressure at 
point 2 is much higher in the diesel cycle than in the Otto cycle because of a higher compression ratio. 
Injecting and burning the fuel at constant volume in the diesel cycle would have caused very high engine 
pressures and stresses at point 3 because of the high compression pressure at point 2. The excessively 
high pressures were avoided in the theoretical diesel cycle by injecting and burning the fuel during the 
expansion stroke. Gas pressures tend to fall during an expansion stroke, but, by injecting the fuel energy 
at the right rate, pressures were kept constant between points 2 and 3 of the theoretical diesel cycle. Fuel 
input is stopped at point 3, and the pressures begin to fall, as in a normal expansion stroke. Point 3 is 
called the fuel cutoff point, and the ratio V3/V2 is called the fuel cutoff ratio. 

 

Figure 2.3 The theoretical diesel cycle 

 

Chapter 5, eq. 5.1-5, Torque Equations 

In Figure 5.1, the torque exerted on the nut is defined by the following equation: 

T = F * L          (5.1) 

where  T = torque in N.m (Lb-ft) 
 F = force in N (Lb) 
 L = length in m (ft) 

 

Figure 5.1-Torque being exerted by a wrench. 



Notice that torque could be increased by exerting a larger force on the wrench or by exerting it further 
from the center of the bolt. Engines must produce torque in order to rotate the drive wheels when a tractor 
is pulling a load. 

In Chapter 2, work was defined as a force acting through a distance. In contrast, torque is a force acting 
perpendicular to a distance, the distance being measured from a center of turning to the point of 
application of the force. In customary units, torque is given in Lb-ft to avoid confusion with work or energy, 
whose units are ft-Lbs. A torque does not necessarily do work. If the nut in Figure 5.1 resisted all 
movement, for example, a large torque could be exerted without accomplishing any work. Conversely, 
work would be done if the wrench moved. Suppose that a constant torque was exerted while the wrench 
traveled one revolution, as shown in Figure 5.2. Then, the force would have traveled a distance equal to 
the circumference of a circle of radius L. Thus, the work done per revolution (work/rev) would be: 

        T*2LF*2F*L2rev/work        (5.2) 

 

 

Figure 5.2-Work being done by a wrench. 

 

That is, the work in joules (ft-Lbs) per revolution is 2π times the torque in N.m (Lb-ft). 

Power is defined as the rate of doing work. That is, it is the amount of work accomplished per unit of time. 
In equation form, power (P) is defined as follows: 
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where x = distance traveled by the force (F) in time (t) 

A force of one newton (pound) moving a distance of one meter (foot) in one second would expend an 
amount of power equal to one N.m/s (ft-Lb/s). This combination of SI units has been given the name watt 
(W) in honor of James Watt. A watt is such a small unit that tractor power is more frequently measured in 
kilowatts (kW). In customary units, as was mentioned in Chapter 2, it was James Watt who defined one 
horsepower (hp) as being equal to 550 ft-Lbs/s. 

In Chapter 2, linear speed was defined as distance traveled per unit of time. Therefore, Equation 5.3 can 
be interpreted as showing that linear power is the product of force times the speed with which the force is 
moving. Equation 5.4 computes linear power in typical units: 
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where  P = linear power in kW (hp) 

 F = force in kN (Lbs) 

 S = speed in km/h (mph) 

 KLP = units constant = 3.6 (375) 

Just as linear speed is defined as linear distance traveled per unit of time, rotary speed is defined as the 
amount of angular rotation per unit of time. The most common units for rotary speed are revolutions per 
minute (rev/min). 

Rotary power is the product of work/rev (from Equation 5.2) and rotary speed. Equation 5.5 is used to 
compute rotary power in typical units: 
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where  Pb = brake power in kW (hp) 

 T = engine torque in N.m (Lb-ft) 

 N = engine rotational speed in rev/min 

 KRP = units constant = 60,000 (33,000) 

The term brake power is used because the first devices for measuring engine power were called prony 
brakes. The term flywheel power is used interchangeably with brake power. Equation 5.5 can also be 
used to calculate power at the power take off (pto) if pto torque and speed are used instead of engine 
torque and speed. 

 

Chapter 5, eq. 5.6, Power Adjectives  

Power can be measured at various places on or in an engine or tractor. The amount of power varies 
greatly depending on where it is measured. Thus, various adjectives have been coined to describe 
measured power. The fuel is the source of all engine power (Figure 5.3). Fuel equivalent power can be 
computed from the product of fuel consumption rate and the heating value of the fuel: 
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where  Pfe = fuel equivalent power in kW (hp) 

 HV = heating value of fuel in kJ/kg (BTU/Lb) 

 fM = fuel consumption rate in kg/h (Lb/h) 

 Kfe = units constant = 3600 (2545) 

In customary units, heat energy is measured in BTU, for British Thermal Units. The heating value of fuel is 
the amount of energy that would be released in burning a kilogram (pound) of fuel. Fuel heating values 
are listed in Table 6.5 and will be discussed in Chapter 6. The fuel consumption rate can be measured on 
a mass basis, as in Equation 5.6, or on a volume basis. 

 

Chapter 5, eq. 5.15-18, Power Efficiencies 

Several efficiency terms have been coined for describing how well engines convert fuel energy into useful 
power. Indicated thermal efficiency (eit) is the fraction of fuel equivalent power that is converted to 



indicated power: 
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Thus, indicated thermal efficiency is a measure of the combustion efficiency of the engine. For example, 
the indicated thermal efficiency of an engine could be increased by raising the compression ratio, but not 
by reducing the friction losses. The latter change would increase the mechanical efficiency. 

Mechanical efficiency (em) is the fraction of the newly created indicated power that is delivered as useful 
power from the engine: 
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Brake thermal efficiency (ebt) is the overall efficiency of the engine in converting fuel power into useful 
power: 
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The brake thermal efficiency, ebt, is an indication of the fraction of the energy in the fuel that is converted 
to power at the flywheel. If the power was measured at the pto instead, Equation 5.17 would give the pto 
thermal efficiency, epto. Similarly, if the power was measured at the drawbar, the efficiency would be 
designated the drawbar thermal efficiency, edb. The brake thermal efficiency can also be calculated using 
the following equation: 

   e *ee mitbt            (5.18) 

Thus, for good overall efficiency, an engine must be mechanically efficient and have an efficient 
combustion process. Figure 5.6 summarizes the relationship of the various efficiencies to the power flow 
through an engine. Example Problem 5.4 illustrates the calculation of an example engine's efficiencies. 

 

Figure 5.6- Energy flows through an engine. 

 

Chapter 5, eq. 5.20, Specific Fuel Consumption 

The rate at which an engine consumes fuel (in kg/h or Lb/h) varies with its efficiency but also with its size 
and load, that is, a large, heavily loaded engine will always consume more fuel than a small, lightly-
loaded one. Thus, although engine efficiency affects fuel consumption, fuel consumption alone is not a 
good indicator of engine efficiency. The term specific fuel consumption (SFC), has been developed to 
indicate fuel consumption in relation to the amount of work that is being done by the engine. SFC is 
defined as follows: 
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where:  SFC = specific fuel consumption in kg/kW.h (Lb/hp-h) 

fM = fuel consumption rate in kg/h (Lb/h) 

 P = power, kW (hp) 



 

Chapter 6, eq. 6.1, 6.2, table 6.6, Combustion Equation 

The API has devised a special scale for gravities. It is expressed in API degrees and is calculated as 
follows: 

 5.131
SG

5.141
APIo            (6.1)   

where SG = specific gravity of fuel at 15.5 oC (60 oF) 

Equations have been developed for estimating the heating value of petroleum fuels from their API gravity. 
The equations are: 

   )10API(KKHHV 2F1F             (6.2) 

and    KHHV 7190.0LHV 3F         (6.3) 

where  HHV = higher heating value in kJ/kg (BTU/Lb) 

 LHV = lower heating value in kJ/kg (BTU/Lb) 

 API = API gravity in degrees 

 KF1 = constant = 42,860 (18,440) 

 KF2 = constant = 93  (40) 

 KF3 = constant = 10,000 (4,310) 

Table 6.6 Comparison of properties of several fuels 
Fuel API 

Gravity 
Degrees 

Density 
kg/L 

(Lb/gal) 

Higher 
Heating 

Value kJ/kg  
(BTU/Lb) 

Research 
Octane  

No. 

Boiling 
Range 

oC 
(oF) 

Stoich 
Air-Fuel 

Ratio 

Hydrogen --- 0.09x10-3 a 

(.751x10-3) 
142,000 
(61,045) 

130+ -253 
(-423) 

34.3 

Butane 112 0.580 
(4.835) 

49,500 
(21,280) 

98 0 
(32) 

15.5 

Propane 146 0.509 
(4.244) 

50,300 
(21,625) 

111 -44 
(-42) 

15.7 

Gasoline 61 0.735 
(6.128) 

47,600 
(20,464) 

93 30-230 
(86-446) 

15.2 

No. 1 
diesel 

40 0.823 
(6.861) 

45,700 
(19,647) 

40b 160-260 
(320-500) 

15.0 

No. 2 
diesel 

38 0.834 
(6.953) 

45,500 
(19,560) 

40b 200-370 
(392-700) 

15.0 

Methyl 
soyate 

--- 0.885 
(7.378) 

38,379 
(16,500) 

51c  12.5 

Methanol --- 0.792 
(6.603) 

22,700 
(9,759) 

110 65 
(149) 

6.49 

Ethanol --- 0.785 
(6.545) 

29,700 
(12,769) 

110 78 
(172) 

8.95 

Butanol --- 0.805 
(6.711) 

36,100 
(15,520) 

 118 
(244) 

11.2 

aAt a pressure of 100 kPa (14.5 psi) and temperature of 25°C (77°F) 
bMinimum cetane rating for diesel fuel 
cMeasured cetane rating for methyl soyate (methyl ester of soybean oil) 

 



 

Chapter 14, eq. 14.3-4, fig. 14.1, Hydraulic System Power 

 

Figure 14.1 A positive displacement hydraulic system providing mechanical advantage. 

Suppose the small piston in Figure 14.1 was pushed down a distance of 10 cm (4 in) in one second. Oil 
would be forced into the large chamber, and the large piston would be forced to raise the heavy mass. 
How fast would the large piston move, and how far would the mass be raised? The fundamental 
relationship needed to answer the question is that flow is the product of velocity and area. Equations 14.3 
and 14.4 show this relationship with a constant inserted for more convenient units: 

   A V KQ v            (14.3)  
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where:  Q = oil flow rate in L/min (gpm) 

 V = piston speed in m/s (ft/s) 

 A = piston area in cm2 (in2) 

 Kv = units constant = 6 (3.12) 
 

Chapter 14, eq. 14.11, Hydraulic Pump Power 

The hydraulic power produced by a pump can be calculated by using Equation 14.11: 
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where:  Ph = hydraulic power in kw (hp) 

 QA = actual delivery in L/min (gpm) 

     p = pressure rise across the pump in MPa (psi) 

 KP = units constant = 60 (1714) 
 

Chapter 14, eq. 14.15, Hydraulic Cylinder Force 

The load that can be moved by a hydraulic cylinder can be calculated from Equation 14.15: 
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where:  F = force exerted by the cylinder rod in kN (Lbs) 

 A1 = area of piston in cm2 (in2) 

 A2 = area of piston minus area of rod in cm2 (in2) 

 p1 = pressure acting on area A1 in MPa (psi) 

 p2 = pressure acting on area A2 in MPa (psi) 



 Kp = units constant = 10 (1) 

 

Chapter 14, eq. 14.17-18, Hydraulic Motor Power 

The motor torque can be calculated as follows: 
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where:  T = shaft torque in N.m (Lb-ft) 

     p = pressure drop across motor in MPa (psi) 

 Dm = motor displacement in cm3/rev (in3/rev) 

 eTm = torque efficiency in decimals 

 KTm = units constant = 2 (24) 

The power available from a hydraulic motor is calculated with Equation 14.18: 
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where:   Ps = shaft power available from motor in kW (hp) 

 QA = oil delivery to motor in L/min (gpm) 

 p = pressure drop across motor in MPa (psi) 

 ePm = power efficiency in decimals 

 KP = units constant = 60 (1714) 

 

Chapter 14, figs. 14.23, 14.25, Open Center/Closed Center 

 



Figure 14.23 An open-center hydraulic system. 

 

 

 

Figure 14.25 A pressure-compensated hydraulic system. 

 

Chapter 15, eq. 15.1-2, Clutch 

The torque-transmitting capacity of a clutch or brake can be calculated by using Equation 15.1: 

  n r f FT mc           (15.1) 

where:  T = torque in N.m (Lb-ft) 

 Fc = clamping force in kN (Lbs) 

 f = coefficient of friction 

 rm = mean radius of the clutch or brake in mm (ft) 

 n = number of torque-transmitting surfaces 

In the case of drum brakes, rm is one half the inside diameter of the brake drum. For disk brakes, rm is the 
radius from the axle centerline to the center of the brake pads. For clutches, the following equation can be 
used to calculate the mean radius: 
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where:  do = outside diameter of clutch disk in mm (ft) 

 di = inside diameter of clutch disk in mm (ft) 



 

Chapter 15, eq. 15.3-5, Gear Equations 

Generally, several sets of gears are used to transmit power from the engine to the drive wheels of a 
vehicle. The gears are used to reduce speed and increase torque as power flows toward the drive 
wheels. When two gears are in mesh, the rotation of either gear can be calculated from the rotation of the 
other by using the following equation: 

    n n 2211            (15.3) 

where:  n1 and n2 = number of teeth on gears 1 and 2, respectively 

 θ1 and θ2 = rotation of gears 1 and 2, respectively 

Since the two rotations are accomplished within the same time period, the speed of either gear can be 
calculated from the other by using the following equation: 

  N nN n 2211            (15.4) 

where: N1 and N2 = rotational speeds of gears 1 and 2, respectively. 

Usually, in a vehicle, gear sets are arranged so that the output speed is less than the input speed. The 
gear ratio is defined as the speed of the input shaft divided by the speed of the output shaft, as in the 
following equation: 
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Where:  R = gear ratio 

 Nin, Nout = rotational speeds of input and output shafts, respectively 

 

Chapter 16, eq. 16.1-2, Weight Transfer 

A tractor is shown resting on a smooth, horizontal surface in Figure 16.1. Three forces are applied to the 
tractor body. The tractor weight (W) is shown acting at the center of gravity of the tractor. The center of 
gravity can be considered a balance point. That is, if the tractor was lifted by a cable attached exactly at 
the center of gravity, the tractor would not tip in any direction. The weight of the tractor is supported by 
the ground through forces Rr and Rf applied at the rear and front wheels, respectively. 

 

 

Figure 16.1 Tractor weight force and ground support forces. 

Suppose that point A in Figure 16.1 is chosen as a center of moments. The perpendicular distance from 
point A to the weight force W is shown as Xcg, the distance from the rear axle centerline to the center of 
gravity. The weight W produces a clockwise (CW) moment, (W)(Xcg), about point A. The force Rr passes 



through point A and thus produces no moment. The force Rf produces a counterclockwise (CCW) 
moment, (Rf)(WB), about point A. The distance WB is the wheelbase of the tractor. For the tractor to be in 
equilibrium, the CW moment about point A must equal the CCW moments; therefore (using the quantities 
in Figure 16.1): 

 WB RX W fcg           (16.1) 

where:  W = weight of tractor in kN (Lbs) 

 Xcg = distance from rear axle centerline to center of gravity in mm (in) 

 Rf = ground support force on front wheels in kN (Lbs) 

 WB = wheelbase of tractor in mm (in) 

Dividing Equation 16.1 by the weight W provides a useful equation for calculating Xcg: 
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We could place the front wheels of the tractor on a scale to measure Rf and then place the entire tractor 
on the scale to measure W. The wheelbase could be measured with a ruler, and Equation 16.2 could then 
be used to calculate Xcg. 

The center of gravity of a tractor can be changed by adding ballast weight to the tractor. Adding ballast to 
the tractor ahead of the center of gravity increases Xcg; adding ballast behind the center of gravity 
decreases Xcg. 

 

Chapter 16, eq. 16.10-11, Travel Reduction 

Travel reduction refers to the reduction in forward speed that occurs when a tractor pulls a drawbar load. 
The term slip often is used interchangeably with travel reduction, even though the true slip is slightly 
greater than the travel reduction, i.e., there is some slip even when the tractor is not pulling a drawbar 
load. For example, although travel reduction is actually measured in Nebraska or OECD Tractor Tests, 
the results are reported as slip. Travel reduction can be calculated using the following equation: 
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where:  TR = travel reduction in percent 

 r = effective rolling radius while pulling, in mm (in) 

 ro = rolling radius on a specified surface in mm (in) when tractor pulls no load. 

Measuring effective rolling radii is inconvenient. However, multiplying the rolling radius by the axle 
rotational speed gives the forward speed. If the engine is operating in the governor-controlled range (see 
Section 5.8.2) such that there is little change in axle speed due to the applied load, the approximate travel 
reduction can be calculated using the following equation: 
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where:  Sa = actual speed in km/h (mph) 

 So = travel speed on a specified surface in km/h (mph) when tractor pulls no load 

It is common practice to measure the no-load speed (So) when the tractor is running on a roadway or 
other rigid surface. The actual speed (Sa) must be measured in the field in which the tractor is working. 
Notice that the tractor cannot develop drawbar pull unless there is travel reduction. The tire lugs must 
move rearward and compress the soil to make it strong enough to support the tractive force Ft (Figure 



16.2); the rearward movement of the lugs and the consequent shearing of the soil causes travel reduction. 

 

Chapter 16, eq. 16.14-15, Tractive Efficiency 

Tractive efficiency refers to the fraction of axle power that is converted to drawbar power by the drive 
wheels. Thus, tractive efficiency is defined as: 
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where:  TE = tractive efficiency in decimals 

 Pdb = drawbar power in kW (hp) 

 PA = axle power in kW (hp) 

By making use of Equation 5.4 for drawbar power, the following equation for tractive efficiency can be 
developed: 
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where:  KLP = units constant = 3.6 (375) 

The other variables in Equation 16.15 were previously defined. Equations 16.14 and 16.15 apply to 
tractors with 2WD, 4WD or crawler tractors. 


