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CHAPTER 3 
 

Microbial Systems 
 

3.1 Introduction 
Microorganisms play an important role in many biological 

systems.  Wetlands, compost piles, fermentation vessels, wastewater 
treatment reactors, anaerobic digesters, bioprocess operations, 
bioremediation of contaminated soils, and many other biological 
systems all require the effective use of microorganisms.  Biological 
systems engineers must understand the function of microorganisms 
in diverse settings and be able to apply the tools of engineering to the 
analysis and design of systems containing microorganisms. 

Many textbooks are available that discuss various aspects of 
microorganisms and their functions within specific applications.  
However, each discussion very quickly takes the reader into the 
specific processes and applications of that particular field.  A 
wastewater treatment text discusses microbiological function in an 
aqueous environment where microbial populations are large and well 
distributed, and energy sources and nutrients are readily available.  
At the other extreme, a soil microbiology text discusses applications 
where microorganisms function within an unsaturated soil 
environment where carbon and nutrient transport and availability 
are limiting resources for microbial growth.  Bioprocess engineers 
often are interested in the growth and yields associated with 
microbiological production of a desired product, whereas compost 
engineers are interested in substrate utilization and the death of 
pathogenic microorganisms.  Aerobic processes (e.g., composting, 
wastewater treatment) have much different considerations than 
anaerobic processes (e.g., constructed wetlands, fermentation).   

Because biological systems engineers may work with 
microorganisms in any of their application environments, this 
chapter must establish the fundamentals of microbial processes and 
provide the science and engineering that is of general applicability to 
all biological systems.  

To meet this goal, a review will be provided of many basic 
concepts of microbiology and biochemistry that are of general 
applicability in almost all analyses of biological systems.  Basic 
concepts of chemistry and engineering sciences will be applied to 
microbiological systems.  Finally, these principles will be applied to 
several basic types of microbial systems, and several analytical tools 
will be introduced that are important for biological systems engineers 
to master and use in their designs and analyses.  Of course, the 
reader is encouraged to continue the study of biological systems of 
particular interest to her/his field through additional coursework and 
readings (see selected references at the back of this chapter). 
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3.2  Microbial Growth 
3.2.1  Fundamentals of Microbial Growth 

Growth is defined simplistically as an increase in the size of an 
organism or in the number of members of a population of organisms.  
Depending on the organism, this definition takes different forms and 
can be measured in different ways: for example, growth may be 
measured as a change in height of a plant or change in weight of an 
infant.  For microbes we can measure the growth (or decline) of a 
population by measuring change in the number of cells or the mass of 
those cells.  Growth rate, then, is simply growth expressed per unit 
time. 

Within a closed environment having environmental conditions 
that, at least initially, do not limit growth, microbial growth proceeds 
through a number of phases (Figure 3.1).  The organism initially goes 
through a lag phase (a), where it becomes adjusted to its new 
environment.  Depending on the history and condition of the 
organism and its new environment, the lag phase may be brief (or 
nonexistent), or it may be long, if cells are damaged during the 
transfer, new microbial enzymes must be produced, or the cells must 
otherwise adapt to the new (richer or poorer) environment.  Following 
this adjustment period, the organisms enter a growth phase (b), 
which will be discussed further below.  Eventually, a nutrient and/or 
an energy source becomes limiting, or other environmental conditions 
change, causing the growth to slow and finally cease (c).  The 
subsequent stationary phase (d), which may represent balanced 
cellular growth and death or simply a “hibernation state” for the cells, 
continues until the conditions change to allow further growth, or toxic 
products accumulate that lead to cell population death, identified as 
the death phase (e). 
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Figure 3.1—Growth of a microbial population. 

 

Generalized units—The units of 
some equations in this text will be 
presented in terms of generalized 
units, indicating that any consistent 
set of units may be used.  M=mass, 
L=length, T=time. 
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Doubling time—The time required 
for a population to double in size or 
number. 

During the growth and death phases, the rate of change in the 
population is a function of the size of the current population as 
described by the following equation: 
 
 Xrx μ=  (3-1) 
 
where rx = volumetric growth rate (M L–3 T–1),  
 μ = specific growth rate (T–1), and 
 X = viable cell concentration (M L–3).  
 

If the organism is in a closed system, and growth is the only way 
to change the size (or concentration) of the population, then  
rx = dX/dt.  Substituting this into Eq. (3-1), rearranging, and 
integrating both sides.  
 

 ∫ ∫ μ= dt
X

dX  (3-2) 

 
If μ is constant, integrating Eq. (3-2) with the initial conditions of 
X=X0 at t=0 yields 
 
 t

0 eXX μ=  (3-3) 
 
Eq. (3-3) describes a process in an exponential growth phase.  

Taking natural logarithms of both sides gives 
 
 tXlnXln 0 μ+=  (3-4) 

 
The form of this equation dictates that a plot of ln X versus t 

gives a straight line with slope μ and intercept ln X0.  It often is 
convenient to describe the growth rate of a population using the term 
doubling time, the time required for the population of organisms to 
double or for X to equal 2X0.  Substituting this relationship into Eq. 
(3-3), 
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where td = doubling time (T).  
 
Taking the natural logarithm of both sides, 
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EXAMPLE 3.1 
The algae Lemna is being grown on the surface of a wetland used 

for wastewater treatment.  This organism has a doubling time of 36 
hours under present conditions.  Starting with a mass of 20 kg, how 
long would it take to attain a population of 200 kg? 

 
Solution 

Equations: 
 μ= 693.0td  (3-6) 
 t

0 eXX μ=  (3-3) 
 
where td  = 36 h 
 X0 = 20 kg 
 X = 200 kg 

 
Calculations:  

 
μ = 0.693/td = 0.693 / 36 h = 0.01925 h–1 
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It will take 120 h for the initial population mass of 20 kg to reach 200 
kg, as long as the environmental conditions do not become limiting. 

 
 
 

PROBLEM 3.1 
A culture of E. coli bacteria was found to have a doubling time of 

1.5 hours under current conditions.  A sample was held at these 
conditions for 24 hours before analysis, at which time the bacterial 
count was found to be 1×108 colonies/100 mL.  What was the count of 
the initial E. coli sample? 

 

3.2.2  Measuring Microbial Growth 

The doubling time, or generation time, can be measured by 
counting the number of cells (individual organisms) initially and after 
a period of exponential growth.  Doubling time varies among 
organisms and is dependent on the health of the population and the 
condition of its surrounding environment.  Many common methods 
are available to measure population numbers (APHA, 1995).   

Cells in unsaturated media (such as soil or compost) first must be 
diluted within a buffer solution to place the microbes in solution.  A 
solution containing a microbial population may then require a series 
of dilutions to create a microbial density in the proper range for the 
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Macronutrient—A nutrient present 
at higher concentrations in an 
organism (e.g., concentrations 
greater than 1 mg g–1 dry mass in 
plants).  For example, in higher 
plants, the macronutrients include 
(in order of decreasing concentration) 
C, O, H, N, K, Ca, Mg, P, and S. 

Micronutrient—A nutrient present 
at lower concentrations in an 
organism (e.g., concentrations less 
than 100 μg g–1 dry mass in plants 
and just a few ng g–1 dry mass in soil 
microbes).  In higher plants, the 
micronutrients include (in order of 
decreasing concentration) Cl, Fe, B, 
Mn, Zn, Cu, Ni, and Mo. 

Autotroph—An organism that 
obtains carbon from CO2. 

Heterotroph—An organism that 
obtains carbon from organic 
compounds. 

given technique, or may require extraction with a solvent to separate 
the microbes from other constituents.  Direct microscopic 
enumerations may then be used to count the total cell numbers visible 
under magnification using a light microscope.   

The dilution plate-count method measures viable cells on a 
selective culture medium after serial dilutions.  Centrifugation and 
drying provides a measure of total cell mass.  In solutions where 
extraneous suspended solids are minimal or remain constant and can 
be factored out, optical turbidity of a solution of microbial cells may 
be measured and correlated to cell mass or numbers.  More recently, 
molecular methods are becoming available for quantifying bacterial 
communities (Pepper and Josephson, 1998).  Each of these techniques 
is described fully in the references stated above as well as elsewhere; 
a list of references is included in the back of this chapter.  

3.2.3  Requirements for Microbial Growth 

Every organism has certain requirements for growth.  In order for 
cells to grow, they need nutrients to provide the building blocks for 
the processes of cellular growth and metabolism, energy to fuel these 
processes, and an appropriate environment within which to conduct 
these biochemical reactions.  Optimal growth or product yields 
typically occur only when every requirement is met within a specific 
range.   

Nutrients 

Macronutrients are nutrients needed in the greatest quantities 
for organism growth.  The backbone of all organic compounds is 
comprised of carbon (C), oxygen (O), and hydrogen (H).  Oxygen and 
hydrogen are available to cells from such widely available sources as 
water (H2O), free oxygen (O2), and carbohydrates (represented as 
CH2O).  Organisms are classified as to how they obtain their carbon.  
Autotrophs get their carbon directly from CO2 in the atmosphere 
whereas heterotrophs obtain carbon from the carbohydrates 
previously assimilated by other organisms.   

Other nutrients also are needed in great quantities for various 
purposes.  Nitrogen (N), needed for production of proteins and amino 
acids, is most commonly taken into cells in the NH4+ or NO3– form, 
though nitrogen-fixing bacteria can utilize N2 directly from the 
atmosphere.  Phosphorous (P) is used for the synthesis of nucleic 
acids, phospholipids, and energy carriers (such as adenosine 
triphosphate, ATP) and is available in the environment for cellular 
uptake in the organic or inorganic phosphate forms.  The ultimate 
source of inorganic P is weathered rock, which releases 
orthophosphate, PO43–, primarily as H2PO4– at pH < 7.2 and HPO42– 
at pH > 7.2.  Potassium (K), sulfur (S), calcium (Ca), and sodium (Na) 
also are needed for important growth, enzymatic, and regulatory 
processes and must be obtained from the environment in relatively 
large quantities.   

Micronutrients are the molecules that are necessary for cellular 
growth but in smaller quantities.  These substances play critical roles 



Dynamics of Biological Systems 

 
3-6 

Phototroph—An organism that 
obtains energy from solar radiation. 

Chemotroph—An organism that 
obtains energy from organic or 
inorganic substances. 

Potential—The state of an 
environmental parameter in one part 
of a system that, when compared 
with the state of that parameter in 
another part of the system or 
surroundings, establishes a tendency 
for movement of that parameter. 

Gradient—A difference in potential 
between one volume of space and 
another. 

Thermophile—An organism with 
optimum growth temperature 
between 45 and 80°C.  Maximum 
growth temperature can exceed 
100°C in some organisms. 

Mesophile—An organism that grows 
best at moderate temperatures, 
typically ranging from 15 to 45°C. 

Psychrophile—An organism with 
an optimum growth temperature of 
15°C or lower and a maximum 
growth temperature below 20°C.  
Minimum growth temperatures can 
be below freezing (0°C). 

in proper cell function and must be available for uptake.  Natural 
soils typically have an ample supply.  However, in artificial 
environments (such as hydroponic plant production in a greenhouse, 
or tissue culture studies in a growth chamber), it may be necessary to 
add micronutrients specifically to the culture media.  Some bacteria 
can synthesize all the compounds necessary for growth using just a 
carbon source and a few nutrients, though most bacteria and other 
organisms have more complex nutritional requirements. 

Energy 

Organisms are classified according to how they obtain energy.  
Phototrophs are able to harness the sun’s energy (or equivalent 
artificial lighting) directly.  Green plants, algae, and some bacteria 
use photosynthesis to translate radiant energy into chemical energy, 
which provides them with energy for their growth and metabolism.  
The chemical energy so encumbered provides energy for most of the 
other life forms on earth.  These other life forms are called 
chemotrophs, defined as organisms that must obtain energy for their 
growth and metabolism from chemical sources.  Humans are 
chemotrophs as are the animals we eat.  The yeast used in beer or 
wine making and the bacteria that degrade organic compounds, as 
well as a multitude of other animals and microorganisms, are all 
chemotrophs.  

Temperature 

Every organism has specific requirements for the temperature of 
its surroundings.  Organisms typically are categorized according to 
these requirements as thermophilic, mesophilic, or psychrophilic.  
Each type of organism has a minimum temperature, below which it 
cannot survive (e.g., due to freezing in mesophilic organisms), and a 
maximum temperature, above which growth is not possible because 
its proteins and other cellular constituents become denatured or 
otherwise irreversibly damaged.  Between these two extremes, but 
closer to the maximum temperature, lies an optimal temperature at 
which growth rate is a maximum.  In many biological systems, an 
engineer controls the rate of a process by utilizing the known effect of 
temperature on organism growth rate.   

Water 

All life requires water to grow.  Water hydrates inter- and intra-
cellular spaces, is incorporated into cellular materials, transports 
dissolved solutes to and through organisms, affects gas exchange in 
and around cells and organisms, provides thermal stability with its 
high heat capacity, and cools organisms and their surroundings by 
absorbing heat during evaporation.  Aerobic biological systems within 
porous media (such as soils, compost, or hydroponic gravel cultures) 
typically have optimal water content between 50 and 60% of fillable 
porosity.  This provides adequate moisture while still leaving 
adequate air space for diffusion of oxygen to organisms or plant roots. 
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Aerobic—An organism or process 
that requires oxygen. 

Anaerobic—An organism or process 
that does not require free oxygen. 

Water moves (into living cells, through media, from liquid to gas, 
etc.) according to differences in water potential, a term that combines 
osmotic, matric, and gravitational forces.  Water potential is used to 
express a system’s ability to do work.  Water flows from high water 
potential to low water potential (or from high to low energy) according 
to the 2nd law of thermodynamics, and the rate of movement is 
determined by the magnitude of the water-potential gradient.  There 
is a complex interaction between osmotic, matric, and gravitational 
forces that makes it difficult to model the relative contributions of 
each force to water potential.  At this point in our study, it is 
sufficient to realize that all three contribute to water availability and 
movement in biological systems.  A brief discussion of water potential 
in plants is given in Chapter 6. 

Oxygen 

Organisms have specific requirements for oxygen in their 
environments.  Aerobic organisms have metabolic systems that 
require the availability of oxygen in their environment.  Most plants, 
animals, and microorganisms that grow in open air or near the open-
air interface of soil or water are aerobic.  Anaerobic organisms lack 
the ability to utilize oxygen and may be sensitive or even intolerant to 
its presence.  For example, obligate anaerobes cannot survive in the 
presence of oxygen, which may result because of their inability to 
decompose toxic byproducts of aerobic metabolism, such as hydrogen 
peroxide.  Anaerobic organisms live in deeper waters, saturated soil, 
or other systems where diffusion of oxygen from the atmosphere is too 
slow to maintain an adequate supply.  Aeration must be provided to 
achieve optimum growth when a process has an unfavorable balance 
between oxygen uptake rates of aerobic organisms and oxygen 
replenishment rates in water or through a porous media. 

pH 

Organisms have specific pH ranges within which growth is 
possible, and tighter ranges within which growth is optimal.  Most 
organisms grow best with a near-neutral pH between 5 and 9.  
Acidophiles grow at pH values less than 2, whereas alkaliphiles grow 
in pH conditions greater than 10.  However, regardless of the external 
environment, all cells must maintain an intracellular pH near 
neutral to survive. 

3.2.4 Analysis of Microbial Growth and Product Formation 

The following techniques are used extensively in analysis of 
bioprocesses utilizing microorganisms.  These concepts are described 
in detail in the excellent text by Doran (1995), whose nomenclature 
formed the basis for the discussion in this section.  However, all the 
techniques are completely general and can be applied readily to many 
different biological systems that involve stoichiometric reactions (e.g., 
plant photosynthesis and animal metabolism).  Many of these topics 
will be addressed in later chapters of this text. 

Water potential (ψ)—A measure of 
the potential energy of water in a 
system relative to that of pure, free 
water at atmospheric pressure.  For 
example, water potential drives the 
movement of water through a plant 
from soil (ψ ≈ 0 to –1.5 MPa) to plant 
cells (ψ ≈ –0.4 to –4.0 MPa) to air (at 
20°C, ψ = –2.72 MPa at 98% rh, –
14.2 MPa at 90% rh, and –311 MPa 
at 10% rh). 

Osmotic potential (ψs)—The 
pressure caused by the attraction of 
solute ions for water molecules.  
Using 0 for the osmotic potential of 
pure water, all water solutions have 
negative osmotic potential.  Water 
moves from higher to lower osmotic 
potential, as when water moves 
across a membrane in the direction 
from deionzed water (high ψs) to salt 
water (low ψs). 

Matric potential (ψm)—The 
pressure caused by adsorption of 
water to hydrophilic surfaces.  Like 
osmotic potential, it is always 
negative.  Water moves from higher 
to lower matric potential, as when 
water (high ψm) fills the pores of a 
floating sponge (low ψm) by capillary 
rise. 

Pressure potential (ψP)—The 
pressure caused by external forces 
exerted on a system.  Using 0 for 
atmospheric pressure, pressure 
potential can have either a positive 
or negative value.  (A negative 
pressure is called tension or suction.)  
Water moves from higher to lower 
pressure, as when it moves from a 
reservoir (positive ψP) out a valve to 
the surroundings (atmospheric P or 0 
ψP). 
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Batch process—A process in which 
all materials are added to a closed 
system at the beginning of the 
process and products removed only 
at the termination of the process. 

Semi-batch process—A batch 
process in which materials may be 
either added or removed during the 
process (not both). 

Fed-batch process—A semi-batch 
process in which material is added 
during the process (but not removed). 

Continuous process—A process in 
which material may flow in and out 
of the system during the process. 

Acidophile—An organism that 
grows well in a low-pH environment.  
They might be described as “acid 
loving.” 

Alkaliphile—An organism that 
grows well in a high-pH 
environment.  They might be 
described as “base loving.” 

Material Mass Balance 

Microbial systems often are analyzed using one of several 
simplified process descriptions.  The most common of these are batch 
process, semi-batch process, fed-batch process, and continuous 
process.  Each describes a specific set of assumptions used to analyze 
mass flow into and through the system.   

Describing the mass flows into, through, and out of a system 
during a process is important for quantifying reactant utilization; 
product yields; nutrient, water or oxygen requirements; or may be 
important for understanding the impacts of other environmental 
control measures.  A mass balance of the following form can be 
applied to each of the process types described above: 
 
 mass in + mass generated = mass out + mass consumed (3-7) 

 
This balance applies to each constituent of the process as well as 

to the overall process itself.  If the constituent for which the mass 
balance is being written is not involved in a reaction during the 
process, Eq. (3-7) can be simplified: 
 
 mass in = mass out (3-8) 

 
Material balances are essential tools for analyzing biological 

systems.  As with all engineering analyses, it is important that mass 
balances are well organized so that anyone checking your work may 
follow the steps, methods, and assumptions used.  The following 
structure may help organize material balances used in analyses 
throughout this text. 

 
1. Determine the goals of the analysis.  What are you trying to 

find?  How will the solution be used?   
2. Draw a diagram of the system.  All mass flows should be 

shown using directional arrows into or out of the system, as 
appropriate, and labeled with known values.  Convert all 
values (e.g., values known in volumetric terms) to a common 
set of mass and mass flow rate units (e.g., kg and kg h–1).   

3. Clearly state all assumptions.  This may be the most critical 
step of engineering analyses, but one that too often is 
overlooked by engineering students during their coursework.  
Rarely are all the important facts about a real-life problem 
known, perhaps even more so with biological systems 
analyses because of the inherent variability of biological 
material properties and complexity of biological processes.  
Many of the problems in this textbook are representative of 
the types of analyses you are likely to see as biological 
systems engineers; all the information necessary to solve the 
problem may not be given.  You should begin to cultivate your 
engineering judgment by making and justifying the 
assumptions necessary to allow you to proceed with the 
problem solution.  These assumptions must be carefully 
described and included at the beginning of the analysis.  This 
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will allow others to understand the conditions under which 
your analysis is applicable, assess whether the assumptions 
are appropriate, or even determine how the assumptions 
could be improved.  

4. Write the appropriate mass balance equation for each 
constituent.  This equation should reflect the assumptions 
described in steps 2 and 3.  Depending upon whether the 
constituent being studied undergoes a reaction or not will 
determine whether Eq. (3-7) or the simplified Eq. (3-8) is 
appropriate.  

Stoichiometric Balance 

For mass balances involving reactions, the stoichiometry must be 
known before the mass balance terms can be determined.  For 
example, new cells and products are synthesized during the microbial 
growth process and must be described quantitatively using 
stoichiometry before a mass balance can be conducted.  Even though 
the growth process is complex, the mass (or number of moles) of each 
element must balance between reactants and products.  Taking a 
macroscopic view of the process of aerobic cell growth, we can write a 
general stoichiometric equation that focuses on the major reactants 
and products. 

 
 OHeCOdNOCHcNOHbOaNOHC 22ihg2zyxw ++→++ δβα  (3-9) 
 
where CwHxOyNz =  substrate (carbon source),  
 HgOhNi  =  nitrogen source,  
 CHαOβNδ  =  product biomass, and 
 a, b, c, d, e  =  stoichiometric coefficients.  

 
The subscripts in Eq. (3-9) are dependent on the species involved 

in the reaction.  For example, glucose as a substrate would have w=6, 
x=12, y=6, and z=0; ammonium as a nitrogen source would have g=4, 
h=0, and i=1; E. coli as a biomass growth product would have α=1.77, 
β=0.49, and δ=0.24; and yeast as a biomass growth product would 
have α=1.75, β=0.5, and δ=0.15 (Roels, 1980; Atkinson and Mavituna, 
1983).  It is interesting to note that biomass of a variety of forms have 
remarkably similar composition; thus a general formula of 
CH1.8O0.5N0.2 may be reasonable in lieu of more specific information 
about a particular species.  Because the stoichiometric coefficient of 
the substrate is 1 in Eq. (3-9), it is said to be written on the basis of 
one mole of substrate.  Thus, the coefficients a, b, c, d, and e represent 
the moles of each substance that are required or produced per mole of 
substrate reacted.  Other substrates and products can be added to Eq. 
(3-9) if appropriate to the analysis, though it should be noted that the 
macronutrients C, H, O, and N comprise 90 to 95% of most biomass 
(as discussed above), and thus often constitute the primary 
constituents of concern. 

Mass balance for each constituent of Eq. (3-9) can be written 
(using normal procedures of a stoichiometric balance) as follows: 
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Chemoheterotroph—An organism 
that obtains carbon and energy from 
organic compounds. 

 
 dcw:balance C +=  (3-10) 
 
 e2cgbx:balance H +α=+  (3-11) 
 
 ed2chba2y:balance O ++β=++  (3-12) 
 
 δ=+ cibz:balanceN  (3-13) 

 
All subscripts are known for the given reactants and products of a 

reaction, but the coefficients are not known.  However, because there 
are 5 unknown coefficients (a, b, c, d, and e) in Eq. (3-9) and only 4 
equations with which to solve for them [Eqs. (3-10) through (3-13)], 
there must be additional information about the relationships between 
terms of this equation.  A common solution is to experimentally 
determine a respiratory quotient (RQ).  The RQ is a stoichiometric 
ratio of CO2 produced to the O2 consumed during a reaction.   
 

 
a
d

consumedOmoles
producedCOmolesRQ

2

2 ==  (3-14) 

 
For example, in the complete oxidation reaction of glucose and oxygen 
to carbon dioxide and water (C6H12O6 + 6O2 → 6CO2 + 6H2O), d = 6, a 
= 6, and the RQ = 1.0.  Now, all the coefficients of Eq. (3-9) can be 
determined. 
 

EXAMPLE 3.2 
Consider an in-vessel composter using a population of 

thermophilic chemoheterotrophic microorganisms to degrade 
biomass.  How many kg of ammonia must be added to break down the 
biodegradable fraction of 1 kg of wheat-straw substrate to CO2 and 
H2O?  The respiratory quotient for wheat straw is assumed to be 1.1.  
(Note: In practice, the N often would be applied as NH4+Cl– or 
NH4+SO4–, but for stoichiometric analysis the base state of NH3 often 
is used.) 

 
Solution 

Diagram: 
 
 
 
 
 
 

Assumptions: 
• Aerobic conditions 
• Microbial composition is CH1.8O0.5N0.2 
• Ammonia (NH3) is sole nitrogen source 
• Wheat straw has 30% biodegradable substrate  

Compost 
Process 

wheat straw 
ammonia 
oxygen 

microorganisms 
nonbiodegraded 
wheat straw 
carbon dioxide 
water 
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Photoautotroph— An organism 
that obtains carbon from CO2 and 
energy from solar radiation. 
Chemoautotroph— An organism 
that obtains carbon from organic 
compounds and energy from solar 
radiation. 

• The biodegradable fraction of wheat straw has composition 
similar to glucose:  C6H12O6 

 
Equations: 

  
 OHeCOdNOCHcNOHbOaOHC 22ihg2yxw ++→++ δβα  (3-9) 
 
 OHeCOdNOCHcNHbOaOHC 222.05.08.1326126 ++→++  
 
 N balance: b = 0.2 c  → b = 0.2 c 
 C balance: 6 = c + d → d = 6 – c 
 RQ: 1.1 = d/a → a = d/1.1 = (6 – c)/1.1 
 H balance: 12 + 3 b = 1.8 c + 2 e → e = ½[12 + 3 (0.2 c) – 1.8 c] 
 O balance: 6 + 2 a = 0.5 c + 2 d + e → c = 2 (6 + 2 a – 2 d – e) 

 
Calculations: 

Solving the 5 independent equations (i.e., solving first for c and 
then for each other coefficient based on c) gives: 

 
 a = 1.94, b = 0.77, c = 3.88, d = 2.13, e = 3.68 

 
Thus, the balanced stoichiometric equation is 

 
OH68.3CO13.2NOCH88.3NH77.0O94.1OHC 222.05.08.1326126 ++→++

 
and 0.77 moles of NH3 are used per mole of substrate consumed.   
Converting into mass units: 

 
MWsubstrate = 6(12.0 kg/mol)C + 12(1.0)H + 6(16.0)O = 180 (kg/mol)substrate 
MWNH3 = 1(14.0 kg/mol)N + 3(1.0)H = 17.0 (kg/mol)NH3 

 

3
3

33
NH

NH

NH

substrate

NH
substrate

substrate
substrate

substrate
substratestraw

kg022.0
mol

kg0.17
mol

mol77.0
mol001667.0

mol001667.0
kg180

molkg30.0%30kg1

=××

=×=×

 
Thus, 22 g of NH3 are required to compost the biodegradable fraction 
of 1 kg wheat straw. 
 

 
 

PROBLEM 3.2 
The algae Lemna in Example 3.1 is a photoautotroph, and uses 

ammonium (NH4+) in the water as its primary nitrogen source.  Write 
a bioprocess reaction equation for a photoautotroph that is analogous 
to Eq. (3.9).  How much NH4+ must be provided per kg of biomass 
produced to sustain growth?   
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Available electrons—The number 
of electrons available for transfer to 
oxygen during a biological process. 

Degree of reduction—The available 
electrons per unit carbon of a 
substance. 

Electron Balance 

One problem with the application of Eq. (3-9) is that it is difficult 
to measure accurately the amount of water produced during biological 
reactions because the quantity is so small relative to the total amount 
of water in the system.  This makes it difficult to determine the e 
coefficient needed to complete the H and O balances [Eqs. (3-11) and 
(3-12)].  Instead of mass balances in this case, it is more convenient to 
use the principle of “conservation of reducing power (or available 
electrons)” to quantify an electron balance.  This method tracks how 
the electrons are transferred from the substrate to the products 
during a reaction. 

The number of available electrons is determined from the valance 
of an element (from the periodic table), which describes the number of 
electrons available on its outer orbital shell.  The available electrons 
for the most common elements in biological processes are C (+4), H 
(+1), O (–2), P (+5), and S (+6).  The available electrons for N vary 
according to the N source being used in the reaction, which typically 
is called the reference state: N has (–3) available electrons for a 
reference state of ammonia (NH3) and ammonium (NH4+), (0) for 
molecular nitrogen (N2), (+3) for nitrite (NO2–), and (+5) for nitrate 
(NO3–).  The number of available electrons per unit of carbon in a 
material is referred to as its degree of reduction, γ.  Degree of 
reduction uses consistent units of electrons per molecule or moles of 
electrons per mole of substance. 

 

EXAMPLE 3.3 
For Example 3.2, determine the number of available electrons for 

each substance, and the degree of reduction for both the substrate 
and the biomass product. 

 
Solution 

Equations: 
Use the balanced stoichiometric equation from Example 3.2.  

 
Calculations: 

Available electrons (using ammonia as the reference state for N): 
 
CwHxOyNz: w(+4)+x(+1)+y(–2)+z(–3) = 4w+x–2y–3z 
H2O: 2(+1)+1(–2) = 0 
CO2: 1(+4)+2(–2) = 0 
NH3: 1(–3)+3(+1) = 0 
CHαOβNδ: 1(+4)+α(+1)+β(–2)+δ(–3) = 4+α–2β–3δ 

 
Degree of reduction, γ (number of electrons per unit carbon): 

 
Substrate: γS = [4w+x–2y–3z]/w 
Biomass: γB = [4+α–2β–3δ]/1 = 4+α–2β–3δ 

 
Thus, for wheat straw (glucose) substrate and generalized 
microbial biomass: 
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 γS:  [4(6)+12–2(6)–3(0)]/6 = 4 molelectrons mol–1substrate 
 γB:  4+1.8–2(0.5)–3(0.2) = 4.2 molelectrons mol–1biomass 

 
 
 

PROBLEM 3.3 
For Problem 3.2.1, determine the number of available electrons 

for each substance, and the degree of reduction for both the substrate 
and the biomass product.  

 
 
 
Because the number of each molecule is conserved in a 

stoichiometrically balanced growth reaction, so is the number of 
available electrons.  Applying this concept to Eq. (3-9) and using the 
available electron calculations from Example 3.3, the available-
electron balance is 

 
 )0(e)0(dc)0(b)4(aw BS ++γ=+−+γ  (3-15) 
 
where γS = degree of reduction of substrate, and 
 γB = degree of reduction of biomass. 

 
Rearranging Eq. (3-15), we can find the fraction of electrons in 

the substrate that are donated to each receptor during the reaction. 
 

 η+ε=
γ

γ
+

γ
=

S
B

S w
c

w
a41  (3-16) 

 
where 4 a/(w γS) = ε = fraction of electrons in substrate donated to 

oxygen (as it is reduced to H2O and CO2), and  
 c γB/(w γS) = η = fraction of electrons in substrate donated to 

biomass.  
 

EXAMPLE 3.4 
For the composting system in Examples 3.2 and 3.3, use an 

electron balance instead of an O balance [Eq. (3-12)] to recalculate the 
a coefficient of the stoichiometric balance and to determine the 
number of kg of O2 required to oxidize the biodegradable fraction of 
the wheat straw.  How many m3 of air would be required to satisfy 
this requirement? 

 
Solution 

Equation:  
 
 )0(e)0(dc)0(b)4(aw BS ++γ=+−+γ  (3-15) 
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Calculations:  
Using degrees of reduction from Example 3.3: 

 
6 (4) – 4 a = c (4.2) 

 
and rearranging, 

 
a = (24 – 4.2 c) / 4 

 
Recall from the stoichiometrics [Eq. (3-9)]: 

 
 N balance: b = 0.2 c  →b = 0.2 c 
 C balance: 6 = c + d →c = 6 – d 
 RQ: 1.1 = d/a →d = 1.1 a 
 H balance: 12 + 3 b = 1.8 c + 2 e →e = ½[12 + 3 (0.2 c) – 1.8 c] 

 
Solving for the coefficients a through e: 

 
a = 1.935, d = 2.129, c = 3.871, b = 0.774, e = 3.677 

 
Thus, 1.935 moles of O2 are required for each mole of wheat straw 
degraded.  However, if only 30% of the straw is biodegradable, 
then 

 

2
2

22
O

straw

straw

O

O

straw

O
straw

strawstraw

kg0516.0
kg0.180

mol
mol

kg0.16
mol

mol935.1
kg3.0

kg3.03.0kg1

=×××

=×

 

 
Using an oxygen content of air of approximately 21% by volume 

(and density of oxygen of 1.32 kg m–3 at 20°C and 1 atm, from a 
reference table having standard thermophysical properties of matter) 

 

air3

O3
air3

O

O3
O m186.0

m21.0
m

kg32.1
mkg0516.0

22

2
2 =××  

 
Thus, 0.186 m3 (186 L) of air would need to be available to degrade 
30% of the wheat straw.  Note, however, that this does not account 
for the fact that not all supplied air is available to the microbes 
(delivery is not 100% efficient) and microbes do not use all the 
available air (they are not 100% efficient users).  Thus, this amount 
represents a theoretical minimum amount of air required for the 
process. 

 

Biomass and Product Yields 

Equation (3-16) also can be used to determine an expression for 
the theoretical maximum biomass yield, i.e., the yield if all available 
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Biomass yield (YX/S)—The mass of 
biomass (X) produced per mass of 
substrate (S) consumed. 

Product yield (YP/S)—The mass of 
product (P) produced per mass of 
substrate (S) consumed. 

electrons were used in biomass formation.  In this case, setting ε=0 
(which forces η to be 1) and rearranging gives 
 

 
B

S
max

wc
γ

γ
=  (3-17) 

 
The cmax coefficient determines the maximum number of moles of 

biomass produced per mole of substrate, and is used to calculate the 
theoretical maximum biomass yield.  Actual biomass yield must be 
determined experimentally for specific environmental conditions and 
nutrient sources, and can be expressed using the c coefficient from 
Eq. (3-9): 
 

 
substrate

cells
SX MW

)MW(c
consumedsubstratekg
producedbiomasskgY ==  (3-18) 

 
where YX/S = yield of biomass (X) per unit substrate (S) kgB kgS–1), 

and 
 MW = molecular weight of a substance (kg mol–1).  
 
Thus, Eq. (3-18) can be used with cmax from Eq. (3-17) to determine 
the theoretical maximum biomass yield for a balanced reaction. 

All the same mass and electron balance concepts presented above 
can be extended to formation of a product in a biological reaction.  
Adding a product term to Eq. (3-9) gives: 
 

 
mlkj22

ihg2zyxw
NOHCfOHeCOdNOCHc

NOHbOaNOHC
+++

→++

δβα
 (3-19) 

 
where CjHkOlNm = product, and 
 f = stoichiometric coefficient for the product.  

 
The degree of reduction of the product, γP, is calculated similar to 

the other reduction terms, as shown in Example 3.3.  One additional 
coefficient requires one additional equation to solve the system of 
mass balance equations.  Analogous to biomass yield, the product 
yield for a specific reaction and environment can be experimentally 
determined: 

 
substrate

product
SP MW

)MW(f
consumedsubstratekg
producedproductkgY ==  (3-20) 

 
where YP/S = yield of product (P) per unit substrate (S)  

(kgP kgS–1).  
 
It is important to note that the product must be produced in 

association with the growth process, not as a secondary product of 
metabolism; i.e., the reaction must conform to Eq. (3-19). 
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Exergonic—A chemical reaction 
that releases energy. 

Endergonic—A chemical reaction 
that consumes energy. 

EXAMPLE 3.5 
Determine the actual and theoretical maximum biomass yields 

for the compost system in Example 3.2.  
 

Solution 
Equations: 

 
 

B

S
max

wc
γ

γ
=  (3-17) 

 
substrate

cells
SX MW

)MW(cY =  (3-18) 

 
Calculations: 

MWcells = 1(12.0 kg/mol)C + 1.8(1.0)H + 0.5(16.0)O + 0.2(14.0)N  
= 24.6 (kg/mol)cells 

 
MWsubstrate = 6(12.0 kg/mol)C + 12(1.0)H + 6(16.0)O  

= 180 (kg/mol)substrate 
 
Using the c coefficient from Example 3.2 along with Eq. (3-18), 
actual biomass yield is 
 

 [ ]
substrate

biomass

substrate

cells
SX kg

kg530.0
)mol/kg(180

)mol/kg(6.2488.3Y ==  

 
Using the degrees of reduction from Example 3.3 along with Eq. 
(3-17), cmax is 

 ( ) 714.5
2.4
0.46cmax ==  

 
and using Eq. (3-18), theoretical maximum biomass yield is 

 

 ( )[ ]
( ) substrate

biomass

substrate
SX kg

kg781.0
molkg180

cellsmolkg6.24174.5Y ==  

 
Thus, for the conditions under which the respiratory quotient was 
determined, 0.53 kg of microbial cells are produced per kg of wheat-
straw substrate consumed.  For the stated stoichiometric process 
reaction, a maximum of 0.78 kg of microbial cells could be produced 
from a kg of wheat straw. 
 

3.3  Microbial Metabolism 
Cellular metabolism has the goal of obtaining energy and carbon, 

the two essential components for maintenance and growth of all 
organic molecules.  The metabolic process includes both the exergonic 
reactions of catabolism and the endergonic reactions of anabolism.  
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Oxidation—Loss (or donation) of 
electrons by a substance.  The 
oxidized form of nicotinamide 
adenine dinucleotide is NAD+.  (The 
“+” indicates that a hydrogen is 
missing and the structure has a + 
charge.) 

Reduction—Gain (or acceptance) of 
electrons by a substance.  The 
reduced form of nicotinamide 
adenine dinucleotide is NADH. 

Oxidation state—Valence of an 
element, or the number of free 
electrons.  The sum of oxidation 
states of elements in a compound 
equals the overall net charge of the 
compound.  The reduced form of 
nicotinamide adenine dinucleotide is 
NADH. 

Having trouble remembering the 
direction of electron transfer during 
redox reactions?  See if this saying 
helps: 

LEO the lion says GER! 

Loss of Electrons = Oxidation 
Gain of Electrons = Reduction 

This means that the energy and carbon that result from the 
breakdown of organic substances (i.e., catabolism) are used for the 
reactions of cell maintenance, growth (biomass production), and 
reproduction (i.e., anabolism).  The two types of processes are 
complementary; both must occur for cellular processes to proceed. 

Endergonic processes harness the energy released when organic 
substances are catabolized.  Cells do not use the liberated energy 
immediately, but rather store the energy for future use.  (This is a 
key point that will be emphasized several times throughout this text.  
Detail on how this works is given in Chapter 5).  The two most 
common forms of storage are as high-energy phosphate compounds, 
such as adenosine triphosphate (ATP), and electron carriers, such as 
nicotinamide adenine dinucleotide (NAD+/NADH), NAD phosphate 
(NADP+/NADPH), and flavin adenine dinucleotide (FAD/FADH2).  
Electrons released during the exergonic reactions are captured by the 
oxidized forms of the carrier (listed first in parentheses above, for 
example NAD+) and transform them to the energy-rich reduced form 
(listed second, for example NADH).  Electrons stored in these 
compounds are often referred to as containing reducing power, 
because the electrons can be used to help reduce compounds in 
subsequent reactions.  

3.3.1  Redox reactions 

One way of describing energy transfers during biochemical 
processes, including those involved with metabolism, is by describing 
the oxidation-reduction (redox) reactions associated with those 
processes.  Breaking bonds (oxidation) releases electrons whereas 
creating bonds (reduction) uses electrons.  A substance that is 
oxidized is transformed into one with lower internal energy.  
Associated with every oxidation reaction is a reduction reaction, in 
which the energy liberated during the oxidation reaction is used to 
increase the internal energy of the reduced substance.  Hydrogen 
often accompanies the electron transferred to the reduced compound 
during a redox reaction.  The concept of “conservation of reducing 
power” presented in Sec. 3.2.4 is another way of stating the fact that 
oxidation and reduction reactions are coupled and must balance. 

Redox reactions change the oxidation state of a compound.  The 
oxidation state describes changes in electron availability of specific 
molecules during reactions, but it does not indicate the direction of 
the reaction.  Reactions proceed in the direction that yields a net 
release of energy (i.e., exergonic), which depends on how readily 
molecules donate or accept electrons.  Is there a way to determine 
which direction a reaction will occur or to calculate how much energy 
is released in the process? 

3.3.2  Electron Tower 

Answering these questions will require an understanding of two 
concepts: the electron tower, which we will introduce, and free 
energy, which we will review and apply from Chapter 1.   



Dynamics of Biological Systems 

 
3-18 

A complete redox reaction can be separated into two half-
reactions, an oxidation and a reduction.  For example, 
 
 H2 + ½O2 → H2O (3-21) 
 
can be separated into the two half-reactions 
 
 H2 → 2H+ + 2e– (3-22) 
 
 ½O2 + 2H+ + 2e– → H2O (3-23) 

 
Equation (3-22) is an oxidation reaction (electrons are lost or 

donated by H2) whereas Eq. (3-23) is a reduction reaction (electrons 
are gained or accepted by H2O).  Each half-reaction represents an 
oxidation-reduction (O-R) couple.  Each O-R couple has a tendency to 
proceed that can be measured by its reduction potential (E0’).  The E0 
is the electrical potential generated by a half reaction relative to a 
reference molecule (H2) under standardized conditions of 
temperature, acidity, and pressure (25°C, pH = 0, and 1 atm).  The E0 
is converted to E0’ by correcting to pH = 7, to reflect neutral 
conditions typical of biological reactions.  The electron tower further 
standardizes the E0’ by representing each O-R couple as a reduction 
reaction, and adjusting the sign of E0’ accordingly.  An electron tower 
is shown in Figure 3.2.  

The electron tower is a convenient way to display the reduction 
potential of O-R couples common to biological systems.  The O-R 
couples with the greatest reducing potential (most negative E0’) are 
shown at the top of the electron tower.  Highly oxidized O-R couples 
(most positive E0’) are shown at the bottom.  Electrons are donated 
from O-R couples at the top of the electron tower and “caught” by 
those with lower reduction potential (more positive E0’).   

3.3.3  Relating Redox Potential to Free Energy 

The E0’ can be related to the Gibb’s free energy, defined as the 
energy available for useful work, of a compound.  The difference in 
reduction potential (ΔE0’) between two O-R couples (or half reactions) 
determines the amount of energy released in a complete redox 
reaction.  This ΔE0’ is related to the change in Gibb’s free energy:  
 
 ΔG0’ = – n F ΔE0’ (3-24) 
 
where ΔG0’ = Gibb’s free energy (kJ),  
 n = number of electrons transferred (moles of electrons),  
 F = Faraday’s constant (96.5 kJ V–1 molelec–1), and 
 ΔE0’ = difference in reduction potentials between two O-R 

couples (V).  
 
Because Gibb’s free energy is a measure of the energy available 

for useful work, the ΔG0’ for a given biochemical reaction indicates 
the amount of energy released or required for that reaction.  A 
positive ΔG0’ indicates an endergonic (energy-requiring) reaction 

CO2/glucose (–0.43) 24e– 
2H+/H2 (–0.42) 2e– 
CO2/methanol (–0.38) 3e– 
NAD+/NADH (–0.32) 2e– 
CO2/acetate (–0.28) 8e– 
S0/H2S (–0.28) 2e– 
CO2/CH4 (–0.24) 
SO4/H2S (–0.22) 8e– 
puruvate/lactate (–0.19) 2e– 
 
 
 

S4O6
2–/S2O3

2– (+0.024) 2e– 
fumarate/succinate (+0.03) 2e– 
cytochrome box/red (+0.035) 1e– 
ubiquinoneox/red (+0.11) 2e– 
 
cytochrome cox/red (+0.25) 1e– 
 
 
cytochrome aox/red (+0.39) 1e– 

NO3
–/NO2

– (+0.42) 2e– 
NO2

–/NO (+0.43)  
 
 
 
 
NO3

–/N2 (+0.74) 5e– 

Fe3+/Fe2+ (+0.76) 1e– 

½O2/H2O (+0.82) 2e– 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2—The electron 
tower. 
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whereas a negative ΔG0’ indicates an exergonic (energy-releasing) 
reaction.  It follows that ΔG0’ = 0 indicates an equilibrium state. 

 

EXAMPLE 3.6 
Determine the change in Gibb’s free energy in the reaction: H2 + 

½O2 → H2O [Eq. (3-21)].  
 

Solution 
Known: 

From the electron tower (Figure 3.2), the number of electrons 
transferred in the reaction is 2 (noted as 2e–).   
For O-R couple in Eq. (3-22): E0’ = –0.42 V 
For O-R couple in Eq. (3-23): E0’ = +0.82 V 

 
Equations: 

 
 ΔG0’ = –n F ΔE0’ (3-24) 

 
Calculations: 

Because the electron tower represents all reactions as reductions, 
the E0’ of the oxidation reaction of Eq. (3-22) must be multiplied 
by –1 before adding it to the E0’ of the reduction reaction of Eq. (3-
23).  Thus, combining the two half reactions Eqs. (3-22) and (3-
23): 

 
ΔE0’  = E0’oxidation + E0’reduction = E0’[Eq. (3-22)] + E0’[Eq. (3-23)]  
 = –(–0.42 V) + 0.82 V = +1.24 V 

 
Solving for Gibb’s free energy: 

 
ΔG0’ = –n F ΔE0’ = –(2 mole–) (96.5 kJ V–1 mol–1e–) (+1.24 V)  
 = –239 kJ  

 
A negative ΔG0’ indicates that the reaction releases energy 
(exergonic), and thus will proceed in the direction as written (from H2 
and O2 to H2O).  That is, the reaction can proceed spontaneously and 
release 239 kJ of free energy available for work per mole of water 
produced.  

 
 
 

PROBLEM 3.6.1 
Determine the change in Gibb’s free energy in the bioprocess of 

converting glucose to CO2 under aerobic conditions by a 
chemoheterotroph.  The reaction is given as 
 
 C6H12O6 + 6O2 → 6CO2 + 6H2O  
 
which can be separated into the two balanced half-reactions 
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 C6H12O6 → 3CO2 + 6H2 + 24e–  
 3O2 + 6H2 + 24e– → 6H2O  

 
 
 

PROBLEM 3.6.2 
Determine the change in Gibb’s free energy in the bioprocess of 

converting CO2 to methane (CH4) under anaerobic conditions by a 
chemoheterotroph.  The reaction is given as 
 
 CO2 + 4H2 → CH4 + 2H2O  
 
which can be separated into the two balanced half-reactions 
 
 4H2 → 8H+ + 8e– 

 CO2 + 8H+ + 8e– → CH4 + 2H2O  
 

3.4  Microbial Enzyme Production 
To this point, we have been concerned with determining the mass 

and energy requirements for microbial growth.  We now have the 
tools to determine how much energy, carbon, or nutrients we must 
add or remove from a given biological system during the course of a 
process to keep it operating at a steady state.  However, just because 
a reaction can occur does not mean that it does occur.  In this section, 
we will study how to determine if a reaction will, or will not, occur, 
and, importantly for biological systems analysis and design, to 
develop a method for describing the rate at which a given reaction 
will proceed.  

3.4.1  Role of Enzymes 

Even if the free energy of a reaction [Eq. (3-24)] indicates that it 
should proceed spontaneously, a reaction still may not occur.  For 
example, there is a large, negative free energy difference between the 
cellulose in paper and its lower energy state of ash, but this does not 
mean that the pages in this book will immediately and completely 
oxidize (release electrons and energy, i.e., go up in flames!).  
Oxidation of paper does occur, but at a very slow rate; there is a 
relatively large amount of energy needed to allow the free energy to 
be released (Figure 3.3).  The brown edges on old books attest to the 
slow “burning” of paper.  The edges of the paper are exposed to the 
oxygen needed for the oxidation to occur, and occasionally these 
exposed edges lose electrons to oxidation.  In order for energy to be 
released more rapidly in a flame, many electrons must release their 
energy simultaneously.  When this occurs, a chain reaction begins in 
which the energy released by the first batch of electrons provides the 
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Enzyme—Specialized protein that 
catalyzes a specific biological 
reaction. 

Active site—The small portion of an 
enzyme that temporarily binds to a 
reactant. 

Activation energy—Energy input 
required in a chemical process to 
bring reactants to a reactive state by 
breaking the chemical bonds that 
exist between each reactant. 

Catalyst—Substance that 
encourages a reaction to proceed by 
reducing the activation energy. 

energy needed for the next batch to oxidize, and so on.  To initiate 
this sequence of reactions, a match could be added to one corner of a 
page (don’t try this on your textbook!).  The additional energy 
provided by the match flame allows a great many electrons to oxidize 
simultaneously and begins a sequence of reactions that (with 
adequate oxygen) allows the rest of the pages to burn as well.   

The match in the above conceptual example provides the 
activation energy needed to initiate the exergonic process of 
converting cellulose to ash.  In the conversion of H2 and O2 to H2O in 
the laboratory, a spark often is used.  Addition of energy to a system 
is one way to overcome the activation energy needed for a reaction to 
occur.  Another way is the use of a catalyst; a catalyst reduces the 
required energy of activation without itself being altered by the 
reaction (Figure 3.3).  In biological reactions, an enzyme most 
commonly fills the role of catalyst. 

 

Progress of Reaction
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Figure 3.3—The effect of a catalyst on the activation energy of 
an exergonic reaction. 

3.4.2  Function of Enzymes 

Enzymes are specialized proteins that catalyze reactions in living 
cells.  Unlike catalysts used in chemical reactions, enzymes are 
highly specific; an enzyme typically catalyzes only one biochemical 
reaction.  An enzyme functions by binding to a reactant at the 
enzyme’s active site.  The presence of the enzyme realigns the forces 
(hydrogen-bonding, van der Waals, and hydrophobic forces) that 
normally hold the reactant in a particular configuration (and give the 
molecule a particular shape).  The configuration that results can 
accept a specific substrate more readily in the position and 
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orientation needed for the reaction to occur.  A schematic 
representation of the enzymatic process is shown in Figure 3.4. 
 

a.                   Enzyme + Substrate(s)

Active site

Substrates

b.                 Enzyme + substrate complex c.                 Enzyme + product complex d.                 Enzyme + Product

Enzyme EnzymeEnzyme

Product

Product

 
Figure 3.4—The enzymatic reaction process (Fuhrmann, 1998). 

 
In an enzyme-catalyzed reaction, an enzyme is temporarily 

associated with a reactant or substrate to form an enzyme-substrate 
complex.  The reaction proceeds and results in formation of a new 
product and reclamation of the enzyme in its original form.  [Eq. (3-
25) is a model of this process]. 
 
 E + S  ES  E + P (3-25) 
 
where E  =  enzyme,  
 S  =  substrate, and 
 P  =  product.  
 
Enzymes can speed the rate of biochemical reactions by as much as 
103 to 1020 times.  Some enzymes can even catalyze endergonic 
reactions. 

Enzymes are named by adding the suffix, -ase, to the name of the 
substrate that the enzyme changes into a new molecule.  Examples 
are: 

 
lactase: lactose → glucose + galactose 
lipase: lipid → fatty acid + glycerol 
maltase: maltose → glucose 
urease: urea + H2O → 2NH3 + CO2 
cellobiase: cellobiose → glucose 
α-amylase: amylose (starch) → glucose + maltose + 

oligosaccharides 
 
Another naming convention is to name the enzyme after the 

reaction catalyzed.  Examples are: 
 
glucose oxidase: D-glucose + O2 + H2O → gluconic acid 
glucose isomerase: glucose  fructose 

Product 

Product 
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Coenzyme—Non-protein substance 
that facilitates enzymatic reactions.  
Common coenzymes are metal ions 
(e.g., Fe, Mo, Mg) and carrier 
molecules (e.g., NADH, FADH2, 
vitamins). 

Reaction order—The relationship 
between reaction rate and a reaction 
constituent, such as substrate 
concentration, described by the 
general equation: rate = (substrate 
concentration)n, where n is the order. 

Allosteric site—Site, other than the 
active site, on an enzyme to which a 
non-substrate compound attaches.  
This may change the shape of the 
enzyme such that the target 
substrate cannot bind to it. 

alcohol dehydrogenase: ethanol + NAD+  acetaldehyde + NADH2 
 
Enzymatic reactions often require the assistance of coenzymes.  

Coenzymes may be prosthetic groups that bind covalently to the 
enzyme or cosubstrates that bind transiently and noncovalently to 
the enzyme.  Carrier molecules supply electrons or small molecules 
required for the reaction. 

Enzymatic reactions also can be inhibited by reactions that 
compete with a substrate for access to an enzyme.  Reactions in which 
a non-targeted substrate competes directly with the reactant for the 
active site demonstrate competitive inhibition.  Inhibition also can 
occur when a substrate attaches to an allosteric site on an enzyme, 
altering the active site into a configuration that cannot bind with the 
reactant.  This differs from competitive inhibition because the 
allosteric site is separate and distinct from the active site. 

3.5  Modeling Enzyme Reaction Kinetics 
Biochemical reactions are commonly analyzed using reaction 

kinetics.  Reaction kinetics describes the relationship between the 
reaction rate and reaction conditions, such as substrate concentration 
or temperature. 

3.5.1  Reaction Orders 

The kinetics of biological processes typically are classified as 
either zero-order, first-order, or second-order.  Fractional-order 
reactions are possible, but rate analyses of most biological systems 
assume an integer value for reaction order.  Higher order processes 
are also possible but not common in biological systems.  A 
combination of zero- and first-order reactions also is possible, as 
demonstrated by the Michaelis-Menten equation discussed later in 
this section. 

Zero-order Kinetics 

Zero-order reactions occur at a rate independent of the 
concentration of any reactant.  The following kinetic expression 
describes the rate of disappearance of substrate A: 
 

 0
0

A0
A

A k]C[k
dt

dCr ==−=  (3-26) 

 
where rA = rate of reaction with respect to substrate A  

(M L–3 T–1), 
 CA = concentration of substrate A (M L–3), and 
 k0 = zero-order rate constant (T–1).  
 
The order of this reaction is 0 with respect to CA.  The rate constant 
includes the effects of both the amount of enzyme present as well as 
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the rate of reaction specific to that enzyme.  Integrating Eq. (3-26) 
gives 
 
 +−= tkC 0A  constant of integration (3-27) 
 
The constant of integration can be solved by letting CA = CA0 at t = 0.  
Thus, 
 
 tkCC 00AA −=  (3-28) 
 
The form of this equation is linear (y = a + b x), indicating that for 
zero-order reactions a plot of CA vs. t would produce a line with slope 
–k0 and intercept CA0. 

First-order Kinetics 

The rate of first-order reactions increases linearly with reactant 
concentration.  The relationship between reaction rate and reactant 
concentration is 
 

 ( ) A1
1

A1
A

A CkCk
dt

dCr ==−=  (3-29) 

 
where k1 = first-order rate constant (T–1). 
 
The order of this reaction is 1 with respect to CA.  Again, integrating 
Eq. (3-29) and letting CA = CA0 at t = 0 gives 
 
 tk

0AA 1eCC −=  (3-30) 
 
or, taking natural logarithms of both sides, 
 
 tkClnCln 10AA −=  (3-31) 
 
Again, the form of this equation is linear (y = a + b x), indicating that 
for first-order reactions a plot of ln CA vs. t would produce a line with 
slope –k1 and intercept ln CA0. 

3.5.2  Michaelis-Menten Kinetics 

Enzyme kinetics deals with the rate at which an enzyme-
catalyzed reaction proceeds.  Rate equations developed from kinetic 
studies can be applied in calculating reaction times, yields, and 
operating conditions to maximize economic return.  All these factors 
are important in the design of a bioreactor. 

Conceptually, an enzyme-catalyzed reaction is represented as 
follows: 

 
 PS E⎯⎯ →⎯  (3-32) 
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The substrate (S) is converted to a product (P) with the help of an 
enzyme (E).  This is a similar, but condensed, representation of Eq. 
(3-25).  If the concentrations of substrate and product are measured 
with respect to time, the product concentration will increase and 
reach a maximum value, whereas the substrate concentration will 
decrease until it is completely consumed (Figure 3.5).  The enzyme 
concentration remains constant.  The rate of reaction can be expressed 
in terms of either the change in substrate concentration CS or the 
product concentration CP. 
 

 
dt

dCr S
S −=  (3-33) 

 

 
dt

dCr P
P =  (3-34) 

 
These rates are the slopes of the curves shown in Figure 3.5.  The 
rates change continuously as the reaction proceeds. 

It is important to understand that reaction conditions, such as 
substrate, product, and enzyme concentrations, influence reaction 
rate.  If we plot the initial reaction rate vs. substrate concentration 
for a range of substrate concentrations and a given enzyme 
concentration, we obtain a curve like that in Figure 3.6.  A different 
but similarly shaped curve would be obtained for a different enzyme 
concentration.  
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Figure 3.5—Changes in product (CP) and substrate (CS) 
concentrations with respect to time in a typical bioreaction. 
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Figure 3.6—Initial reaction rate (rP) as a function of substrate 
concentration (CS) for a given enzyme concentration. 

 
The maximum rate rmax is proportional to the enzyme 

concentration.  Higher enzyme concentrations give higher values of 
rmax.  As shown in Figure 3.6, Km is defined as the substrate 
concentration when the reaction rate is rp = rmax/2. 

In 1902, Henri (Bailey and Ollis, 1986, p. 100) proposed the 
following rate equation: 
 

 
Sm

Smax
P CK

Crr
+

=  (3-35) 

 
The following observations can be made from Eq. (3-35): 
 
1. When the substrate concentration (CS) is low (much less than 

Km), the reaction rate is proportional to CS.  The reaction is 
first order. 

2. When the substrate concentration (CS) is high (much greater 
than Km), the reaction rate approaches rmax and does not 
depend on CS.  The reaction is zero order. 

 
This equation is a fairly good representation of the curve in Figure 
3.6.   

Brown (1902) proposed that an enzyme forms a complex with its 
substrate.  This complex (ES) then dissociates to yield the product 
and regenerate the enzyme.  In equation form, 
 

 ESES
1k

2k

⎯⎯ →⎯
⎯⎯ ⎯←

+  (3-36) 

 
 EPES 3k +⎯⎯ →⎯  (3-37) 
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These two equations break Eq. (3-25) into two reactions, one 
reversible and the other irreversible.  The variables k1, k2, and k3 are 
the rate constants.  Rate constants indicate the speed at which a 
reaction proceeds.   

The following assumptions are made before deriving a rate 
equation for the reaction represented by Eqs. (3-36) and (3-37). 

 
1. Total enzyme concentration remains constant during the 

reaction. 
 

 CE0 = CES + CE (3-38) 
 

where CE0 = enzyme concentration at beginning of reaction  
(t = 0), 

 CES = concentration of enzyme bound with substrate, and 
 CE = concentration of free enzyme.  

 
2. The amount of enzyme is very small compared to the amount 

of substrate.  Only a small portion of the substrate is bound in 
the ES complex at any time t. 

3. Initial product concentration is so low that product inhibition 
is neglected. 

 
In this section, we will discuss two approaches used to derive the rate 
equation: the Michaelis-Menten method and a numerical solution. 

Michaelis-Menten Model 

Michaelis and Menten (1913) assumed that the product-releasing 
step, Eq. (3-37), was much slower than the complex-forming step, Eq. 
(3-36).  Formation of the ES complex is based on very weak 
interactions.  The product-releasing step involves more significant 
chemical changes; therefore, it is reasonable to expect this step to be 
slower. 

If the reaction shown in Eq. (3-37) determines the overall rate of 
reaction, the rates of product formation dCP/dt and substrate 
consumption dCS/dt are proportional to the concentration of the 
enzyme-substrate complex. 

 C k = 
dt

dC = 
dt

dC
ES3

SP −  (3-39) 

 
Since the Eq. (3-36) reaction is reversible, the forward reaction is 

equal to the reverse reaction. 
 
 k1 CS CE = k2 CES (3-40) 
 
The concentrations are expressed in molar units such as kmol m–3 or 
mol L–1. 

Note that Eq. (3-40) follows from Eq. (3-36).  Remember that Eq. 
(3-36) is only a “model” to show how the reaction proceeds; it is not a 
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computational equation.  Eq. (3-40) demonstrates a standard 
procedure for translating Eq. (3-36) into a form that allows 
computation of reaction rates.  In this case, the rate constant k1 times 
the concentration of substance 1 (CS) times the concentration of 
substance 2 (CE) equals k2 times the concentration of the enzyme-
substrate complex (CES).  It will be important for you to become 
familiar with this notation. 

Recall that we assume that the total amount of enzyme is 
conserved [Eq. (3-38)].  Substituting Eq. (3-38) into Eq. (3-40), 
 
 k1 CS (CE0 – CES) = k2 CES (3-41) 
 
Rearranging, we get 
 
 k1 CE0 CS = (k2 + k1 CS) CES (3-42) 
 
and finally, solving for CES, 
 

 
C + 

k
k

C C 
C k+ k
C Ck=C

S
1

2
S0E

S12

S1 0E
ES =  (3-43) 

 
Substitution of Eq. (3-43) into Eq. (3-39) gives 
 

 
C + 

k
k

C C k = 
dt

dC = 
dt

dC = r
S

1

2
S0E3SP

P −  (3-44) 

 
When the concentration of substrate is very high, the rate of 

product formation is a maximum, rp = rmax, and is dependent 
primarily upon the amount of enzyme.  Therefore, 
 
 rmax = k3 CE0 (3-45) 
 
(Note that the initial amount of enzyme CEO also represents the total 
amount of enzyme in the system.)  Eq. (3-44) can now be rewritten as 
 

 
C + K
C r = r

Sm

Smax
P  (3-46) 

 
This equation is known as the Michaelis-Menten Equation, named 
after Leonor Michaelis and Maude Menten.  The Michaelis-Menten 
constant Km is defined by 
 

 
C

CC = 
k
k = K

ES

ES

1
2

m  (3-47) 

 
Km has the same units as CS.  To better understand the meaning 

of Km, suppose that Km equals CS.  This happens when CE = CES, that 
is, when exactly half of the total enzyme has been transformed into 
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the ES complex [Eq. (3-38)].  Substitution of Km = CS into Eq. (3-46) 
gives 
 

 
2

r
C + C
C r = r max

SS

Smax
P =  (3-48) 

 
Thus, Km is the concentration of substrate when the initial reaction 
rate is half the maximum rate.  This demonstrates the common 
definition of Km (the concentration at half-maximal reaction rate). 

At this point it is important to note that the Michaelis-Menten 
derivation of Eq. (3-46) is not the only one in common use.  Briggs 
and Haldane used a slightly different set of assumptions with the net 
result that the Km in their derivation was defined by (k2 + k3)/k1.  If k2 
>> k3, then the Briggs-Haldane definition is approximately equal to 
the Michaelis-Menten definition [Eq. (3-47)].  This occurs when the 
product-releasing step is much slower than the enzyme-substrate 
dissociation step, the assumption used by Michaelis-Menten. 

Numerical Solution 

If reaction rate constants k1, k2, and k3 are known, the following 
set of differential equations can be solved simultaneously to define 
the change in CP, CES, and CS with time. 
 

 Ckdt
dC

ES3
P =  (3-49) 

 

 CkCkCCk=
dt

dC
ES3ES2ES1

ES −−  (3-50) 

 

 CkCCk=
dt

dC
ES2ES1

S +−  (3-51) 

 
An analytical solution is not possible; therefore, the equations 

must be solved numerically.  Several software packages are available 
to solve these equations.   

Solution of the three differential equations requires values for k1, 
k2, and k3.  These values are obtained from experimental data.   

 

Modeling Example Problem 3.1—Michaelis-Menten 
Equation Solution 

This problem was taken from Lee (1992).  For this problem, the 
initial substrate concentration is taken to be CS0 = 0.1 mol L–1, and 
the initial enzyme concentration is CE0 = 0.01 mol L–1.  Product 
concentration at time t = 0 is CP0 = 0.0.  The rate constants are k1 = 
40 L mol–1 s–1, k2 = 5 L s–1, and k3 = 0.5 L s–1. 

Two methods are shown for solving Eqs. (3-49) through (3-51).  
Using the DESIRE software results in a very concise program (Table 
3.1). 
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Table 3.1. DESIRE Program for Modeling Example Problem 
3.1. 
K1=40.       ⏐ K2=5.       ⏐ K3=0.5       ⏐ CEO=0.01 
CS=0.1       ⏐ CP=0.0       ⏐ CES=0.0 
TMAX=130    ⏐ DT=0.1       ⏐ NN=14       ⏐ scale=0.1 
disconnect 1  ⏐ connect ‘d:\chap3\prob31.out’ as output 1 
drun 
disconnect 1  ⏐ connect ‘con’ as output 1 
write ‘Hurrah  Its done’ 
DYNAMIC 
CE=CEO–CES 
d/dt CS=–K1*CS*CE+K2*CES 
d/dt CES=K1*CS*CE–K2*CES–K3*CES 
d/dt CS=K3*CES 
type CP,CS 
/-- 
 
COMMENTS: 
Enter the needed parameters: 
 CS=0.1 sets the value of CS at t=0 
 CP=0.0 sets the value of CP at t=0 
 CES=0.0 sets the value of CES at t=0 
Write the output to the designated file: 
 disconnect 1  ⏐  connect ‘d:\chap3\prob31.out’ as output 1 
Run the program: 
 drun 
Switch back and now write to the monitor screen: 
 disconnect 1  ⏐  connect ‘con’ as output 1 
On-screen message to indicate the program is finished: 
 write ‘Hurrah  Its done’ 
The program statements: 
 DYNAMIC 
 d/dt CS=–K1*CS*CE+K2*CES 
 d/dt CES=K1*CS*CE–K2*CES–K3*CES 
 d/dt CS=K3*CES 
List the variables you want (time is automatically written with the 
listed variables): 
 type CP,CS 
 

A MATLAB program to solve Eqs. (3-49) through (3-51) is written 
as follows.  Each of the three variables CS , CES, and CP must have an 
initial value.  These are: 

 
Variable MATLAB Variable Name 
CS (t = 0) = 0.1 mol L–1 Cso = 0.1 
CES (t = 0) = 0.0 mol L–1 Ces = 0.0 
CP (t = 0) = 0.0 mol L–1 Cpo = 0.0 
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Figure 3.7—Solution to Modeling Example Problem 3.1. 

 
 

The other input required is the total amount of enzyme. 
 

CE0 = 0.01 mol L–1          Ceo = 0.01 
 
Throughout this text, the MATLAB variable names emulate the 
variable names in the equations to the maximum degree possible. 

The rate constants are: 
 
k1 = 40 L mol–1 s–1 k1 = 40 
k2 = 5 L mol–1 s–1 k2 = 5 
k3 = 0.5 L mol–1 s–1 k3 = 0.5 
 
It is acceptable to use rectangular integration if you choose the 

integration interval small enough.  Choosing Δt = 0.2 gives acceptable 
accuracy.  The math procedure is then simply 

 
New value = old value + rate × Δt 

 
For example, the integration to obtain substrate concentration is  
 

dt
dt

dCCC S
SS 1ii +=

−
 

 
The CS i notation means the substrate concentration at the end of the 
ith interval.  CS i–1 is the substrate concentration at the end of the i–1 
interval (beginning of ith interval).  dCS/dt is given by Eq. (3-51).  
Written as a finite difference equation, Eq. (3-51) becomes 
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1i1i ES2ES1
S CkCCk

dt
dC

−−
+−=  

 
Note, CE = CE0 (the initial value) – CES (the amount of enzyme tied up 
in the enzyme-substrate complex).  With these hints, the writing of 
the MATLAB program given in Table 3.2 is straight forward. 
 
Table 3.2.  MATLAB Program for Modeling Example Problem 
3.1. 
 
DEFINITION OF VARIABLES 

Cso = CONCENTRATION OF SUBSTRATE AT t = 0 (mol/L) 
Ceo = CONCENTRATION OF ENZYME AT t = 0 (mol/L) 
Ceso = CONCENTRATION OF ENZYME-SUBSTRATE 
COMPLEX AT t = 0 (mol/L) 
k1, k2, k3 = RATE CONSTANTS (L/mol/s) 

 
Cso=0.1; Ceo=0.01; Cpo=0.0; Ceso=0.0;  
k1=40.0; k2=5; k3=0.5; 
 
delt=0.2; 
 

DYNAMIC SECTION WHERE SET OF DIFFERENTIAL 
EQUATIONS ARE SOLVED 
 
SET INITIAL VALUES 

t(1)=0; 
Cs(1)=Cso; 
Ces(1)=Ceso; 
Cp(1)=Cpo; 

 
TIME LOOP for I=2:131; 
 
SET VALUES AT BEGINNING OF INTERVAL 

t(I)=t(I–1)+1; 
Cesim1=Ces(I–1); 
Csim1=Cs(I–1); 
Cpim1=Cp(I–1); 

 
DELT LOOP (THE INTERVAL IS 0.2s SO THE NUMBER OF 
ITERATIONS FOR EACH SECOND IS 5) 

for IDT=1:5 
 

Ce=Ceo–Cesim1; 
delCsdt=–k1*Csim1*Ce+k2*Cesim1; 
Csi=Csim1+delCsdt*delt; 
delCesdt=k1*Csim1*Ce–k2*Cesim1–k3*Cesim1; 
Cesi=Cesim1+delCesdt*delt; 
delCpdt=k3*Cesim1; 
Cpi=Cpim1+delCpdt*delt; 
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SET VALUES FOR NEXT PASS THROUGH DELT LOOP—(THE 
VALUE AT THE BEGINING OF THE NEXT STEP EQUALS THE 
VALUE AT THE END OF THE CURRENT STEP) 

Csim1=Csi; 
Cesim1=Cesi; 
Cpim1=Cpi; 

 
end %Ends delt loop 

Cs(I)=Csi; 
Ces(I)=Cesi; 
Cp(I)=Cpi; 

 
end % Ends second loop 
PUT VALUES IN A DATA FILE. 

y=[t;Cs;Cp]; 
fid=fopen('Prob31.dat','w'); 
fprintf(fid,'\n %.1f  %.3f  %.3f',y); 
fclose(fid); 

 
 
 

Modeling Problem 3.1—Michaelis-Menten Equation Solution 
This problem was taken from Lee (1992).  A carbohydrate (S) 

decomposes in the presence of an enzyme (E).  The Michaelis-Menten 
kinetic parameters were determined from experimental data. 
 

Km = 200 mol m–3 

rmax = 100 mol m–3 min–1 
 

1. Write a MATLAB program that uses rectangular integration 
to calculate substrate concentration over time in a batch 
reactor.  Assume that the initial concentration CS0 = 300 mol 
m–3.  Plot CS vs. t.  Solve the equation 

 

Sm

SmaxS
CK

Cr
dt

dC
+

=−  

 
analytically.  Verify that the solution is 

 

( ) trCC
C
ClnK maxS0S

S

0S
m =−+  

 
Plot this CS vs. t curve on the same graph as the curve 
obtained with rectangular integration. 
 

2. Repeat Part (1) using your MATLAB program to obtain the 
numerical solution to the differential equation.  
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Use 
Δt = 0.1 
Δt = 0.5 
Δt = 1.0 

 
Give your results in a table.  Compare your data with the 
analytical solution in Part (1). 

 

3.5.3  Inhibition of Enzyme Reactions 

An inhibitor is a substance that decreases enzyme activity.  It can 
decrease the reaction rate either competitively, noncompetitively, or 
uncompetitively. 

Competitive Inhibition 

Since a competitive inhibitor has a strong structural resemblance 
to the substrate, both the inhibitor (I) and the substrate (S) compete 
for the active site on the enzyme.  The formation of an enzyme-
inhibitor complex (EI) reduces the amount of enzyme available for 
interaction with the substrate, thus the reaction rate decreases.  
Normally, the inhibitor combines reversibly with the enzyme.  Its 
effect can be minimized by increasing the substrate concentration.  
This technique can be applied up to the point where the concentration 
of the substrate itself begins to inhibit the reaction. 

The mechanism of competitive inhibition can be represented as 
follows: 
 

 ESES
1k

2k

⎯⎯ →⎯
⎯⎯ ⎯←

+  (3-52) 

 

 EIIE
3k

4k

⎯⎯ →⎯
⎯⎯ ⎯←

+  (3-53) 

 
 EPES 5k +⎯⎯ →⎯  (3-54) 
 
 
If the product formation step is the slower reaction, as assumed for 
the derivation of the Michaelis-Menten equation, the rate of product 
formation can be expressed as 
 
 rp = k5 CES (3-55) 
 
Enzyme is conserved, thus 
 
 CE0 = CE + CES + CEI (3-56) 
 



Microbial Systems 

 
3-35 

where CEI is the amount of enzyme bound in the inhibitor-enzyme 
complex.  The two equilibrium reactions give 
 

 K = 
k
k = 

C
CC

S
1
2

ES

SE  (3-57) 

 

 K = 
k
k = 

C
CC

I
3

4

EI

IE  (3-58) 

 
Assigning the variables k2/k1 = KS and k4/k3 = KI simplifies 

algebraic manipulation.  Eqs. (3-55), (3-56), (3-57), and (3-58) will now 
be manipulated to eliminate the concentrations CE, CES, and CEI. 

Solving Eq. (3-58) for CEI, 
 
 

 
K

CCC
I

IE
EI =  (3-59) 

 
Substituting into Eq. (3-56) gives 
 

 C
K
C1CC

K
CCC=C ES

I

I
EES

I

IE
E0E +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=++  (3-60) 

 
Solving Eq. (3-57) for CE and substituting into Eq. (3-60) gives 
 

 C1
K
C1

C
KC

K
C1

C
CKC ES

I

I

S

S
ES

I

I

S

ESS
0E

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=  (3-61) 

 
Solving Eq. (3-55) for CES and substituting into Eq. (3-61) gives 
 

 
k
r  1 + 

K
C + 1  

C
K  = C

5

P

I

I

S

S
0E

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  (3-62) 

 
or 
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=

K
C1KC

CCkr

I

I
SS

S0E5
P  (3-63) 

 

If we define k5 CE0=rmax and ,K
K
C1K MI

I

I
S =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ then Eq. (3-62) 

reduces to  
 

 
K + C
Cr = r
MIS

Smax
P  (3-64) 
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Since KMI is larger than KS by definition, the reaction rate 
decreases due to the presence of the inhibitor.  The maximum rate is 
not affected by the presence of a competitive inhibitor.  It does take a 
higher concentration of substrate before the maximum rate will occur. 

Noncompetitive Inhibition 

Noncompetitive inhibitors interact with enzymes in many 
different ways.  The end result is that the enzyme-inhibitor 
complexes (EI, EIS, and ESI) are not available to contribute to 
product creation.  A model for noncompetitive inhibition is shown 
below.   
 

 ESES
1k

2k

⎯⎯ →⎯
⎯⎯ ⎯←

+  (3-65) 

 

 EIIE
3k

4k

⎯⎯ →⎯
⎯⎯ ⎯←

+  (3-66) 

 

 EISSEI
5k

6k

⎯⎯ →⎯
⎯⎯ ⎯←

+  (3-67) 

 

 ESIIES
7k

8k

⎯⎯ →⎯
⎯⎯ ⎯←

+  (3-68) 

 
 PEES 9k +⎯⎯ →⎯  (3-69) 

 
The assumption for noncompetitive inhibition is that the 

substrate and inhibitor do not compete for the same site for formation 
of an enzyme-substrate complex or enzyme-inhibitor complex.  It is 
appropriate then to assume the dissociation constants for the first 
and third equilibrium reactions are equal. 
 

 
k
k = K = 

k
k

5

6
S

1
2  (3-70) 

 
If we also assume that the disassociation constants for the second 

and fourth reactions are equal,  
 

 
k
kK

k
k

7

8
I

3

4 ==  (3-71) 

 
The following equations can now be written. 
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 rP = k9 CES (3-76) 
 
Again, we assume that total enzyme remains constant. 
 
 CE0 = CE + CES + CEI + CEIS + CESI (3-77) 

 
These six equations will now be used to derive a rate equation for 

product formation using the Michaelis-Menten approach.  Solving 
Eqs. (3-73) and (3-74) and substituting into Eq. (3-77), we obtain 
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Solving Eq. (3-73) for CEI, substituting into Eq. (3-78) and 
rearranging, we obtain 
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 (3-79) 

 
Solving Eq. (3-72) for CE and substituting into Eq. (3-79) gives 
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Solving Eq. (3-76) for CES, substituting into Eq. (3-80), and solving for 
rp, we obtain 
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Defining rI,max = rmax/(1 + CI/KI), where rmax = k9 CE0, Eq. (3-81) 
simplifies to the Michaelis-Menten form. 
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Since (KI + 2 CI)/(KI + CI) is approximately equal to 1, Eq. (3-82) is 
often further simplified to 
 

 
K+C
Cr=r
SS

Smax,I
P  (3-83) 

 
Since rI,max = rmax/(1 + CI/KI), the maximum reaction rate is 

decreased by the presence of a noncompetitive inhibitor.  However, 
the inhibitor does not affect the constant KS. 

 

3.5.4  Influences on Enzyme Activity 

The influence of factors such as concentration of substrate, 
product, enzyme, and inhibitor on an enzyme reaction have been 
discussed.  Temperature and pH are two other important factors. 

Effect of pH 

Typically, there is a pH range within which an enzyme will react 
at an optimal rate.  This optimum range is different for each enzyme.  
For example, pepsin from the stomach has an optimum pH in the 
range 2 to 3.3, whereas the optimum for amylase from saliva is 6.8.  
Chymotrypsin from the pancreas will react most effectively in the pH 
range 7 to 8.   

The tendency of some amino acids to ionize changes with pH.  
(Remember that enzymes are protein molecules and proteins are 
chains of amino acids.)  Ionization of an amino acid at a nonessential 
location can change with pH, and the result will have little effect on 
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the enzyme’s activity.  However, ionization of an amino acid at an 
active site may profoundly affect the enzyme’s activity.  Experiments 
must be done to determine the optimum pH for each enzyme and 
substrate combination. 

Typical data are shown in Figure 3.8.  In general, the curve is 
“bell-shaped”, and sometimes there is a broader range of maximal 
activity as shown by the dotted curve. 
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Figure 3.8—Typical pH activity profile for an enzyme.  (The 
dotted curve shows an enzyme with broader range of 
activity.) 

Effect of Temperature 

An increase in temperature increases the rate of reaction because 
the atoms have greater energies and therefore a greater tendency to 
move.  The temperature dependence of many enzyme-catalyzed 
reactions can be described by the Arrhenius equation. 
 
 )RT/(E

o aeAk −=  (3-84) 
 

where k = reaction constant (s–1),  
 Ao = frequency factor (s–1),  
 Ea = activation energy (J mol–1),  
 R = universal gas constant (J mol–1K–1), and 
 T = temperature (K).  
 

The Arrhenius equation is an empirical equation that has been 
found to represent many chemical and biological processes.  The 
reaction rate is given by 

 
 r = k CE (3-85)  
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where r = reaction rate (mol m–3 s–1),  
 k = reaction constant (s–1) [Eq. (3-84)], and 
 CE = enzyme concentration (mol m–3),  
 

Temperature rise for a biological process is limited to the usual 
biological range.  As temperature increases above this range, 
denaturation processes progressively destroy the activity of the 
enzyme.  Excessive heating causes the protein chain to unfold, thus 
changing the geometry of the active site.  For most enzymes, 
denaturation begins to occur at 45 to 50°C.  Some enzymes isolated 
from thermophilic organisms collected from hot environments can 
continue to function at temperatures above 50°C. 

3.5.5 Effect of Mass-Transfer Resistance in Immobilized Enzyme 
Systems 

Cost of the enzyme is a significant part of the total cost of product 
production.  Immobilization holds the enzyme in place in a continuous 
stirred-tank reactor (CSTR). Thus, immobilization avoids the problem 
of recovering the enzyme from the mixture remaining at the end of a 
batch reaction.  This recovery is often difficult and expensive to 
achieve.  For a continuous process, immobilization retains the enzyme 
in the reactor. 

External Mass Transfer Resistance 

If the enzyme is held in position on the surface of an insoluble 
particle, the substrate has to overcome the resistance shown by steps 
1 and 2 in Figure 3.9.  These two steps are collectively referred to as 
the external mass transfer resistance.   
 

1 2 Active
Site

 
Figure 3.9—Mass transfer resistance encountered by 
substrate molecule to reach active site on immobilized 
enzyme. 

 
Step 1 — Transfer from the bulk liquid circulating past the 

surface into the relatively static layer (unmixed 
boundary layer) adjacent to the surface. 

Step 2 — Diffusion through the relatively static layer to the 
active site on the surface. 
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How does a substrate molecule move through a static layer?  
Concentration difference is the driving force for this mass transfer.  A 
substrate molecule will diffuse from a region of high concentration to 
a region of low concentration.  As substrate is consumed at the active 
site, new substrate diffuses through the static layer. 

Diffusion is a fundamental concept that is part of the 
understanding of many important events in biological systems.  The 
general equation for mass transfer by diffusion is  

 
Mass Transfer Rate = Mass Transfer Coef. × Area × Conc. Gradient 

 
The equation for the transfer studied here is 
 
 )C(C AkN SSbSS −=  (3-86) 
 
where NS = rate of mass transfer (M T–1),  
 kS = mass-transfer coefficient (L T–1),  
 A = surface area (L2), and 
 CSb = concentration of substrate in the bulk liquid 

circulating past the surface (M L–3).  
 
Surface area, A, is the area associated with a given active site.  For 
example, if there are 100 active sites per mm2, then A = 0.01 mm2. 

Mass transfer occurs at the rate substrate is consumed.  Unless 
substrate is consumed at the active site, there is no gradient to cause 
new substrate molecules to diffuse across the static layer.  Thus, the 
rate of substrate transfer equals the rate of substrate consumption, 
and the rate of substrate consumption equals the rate of product 
formation.  We assume this rate is described by Michaelis-Menten 
kinetics.  Substituting NS from Eq. (3-86) for the reaction rate, rp, in 
Eq. (3-46) results in 

 

 
Sm
Smax

SSbS CK
Cr)CC(Ak

+
=−  (3-87) 

 
It is appropriate to normalize this equation using the following 
definitions: 
 

 
C
CC

Sb

S
S =′  (3-88) 

 

 
K
C

m
Sb=β  (3-89) 

 
Eq. (3-87) can now be rewritten, 

 

 
S

Smax
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or 
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′β

′β
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′−  (3-90) 

 
where NDa  =  rmax/(kS A CSb). 

 
This new constant is called the Damköhler number.  It is 

 

ratetransfer mass maximum
rate reaction catalyzedenzyme maximum=NDa −

−  

 
If the mass-transfer rate is high (substrate readily diffuses 

through the static layer, i.e., NDa << 1), then mass transfer has a 
negligible effect on the achieved reaction rate.  Reaction occurs at the 
rate predicted by the Michaelis-Menten model.  Product-production 
rate is given by Eq. (3-46) as 

 

C + K
C rr

Sm

Smax
P =  

 
If the mass-transfer rate is low (substrate diffuses through the 

static layer very slowly, i.e., NDa >> 1), then mass transfer is the 
limiting factor, and the reaction rate is approximately equal to the 
mass-transfer rate. 

 
SbSP C Akr =  

 
The effectiveness factor, η, quantifies the influence of mass 

transfer.  It is defined by 
 

 
transfer mass by slowed not if rate

rate reaction achieved = η  (3-91) 

 
where η  =  effectiveness factor (0 to 1). 

 
The rate that would be achieved if no mass-transfer limitation 

existed is the rate associated with the concentration in the bulk 
liquid.  The achieved rate is the rate associated with the 
concentration at the active site on the surface.  Substituting the 
respective reaction rates, we obtain  
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Again using the normalizing equations, 
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The η values can range from 0 to 1.  Suppose C’S = 1 meaning CS 

= CSb.  This occurs when there is no concentration gradient across the 
static layer.  No mass-transfer limitation exists.  Under these 
conditions, η = 1.  As mass-transfer resistance increases, C’S → 0 and 
η → 0. 

Internal Mass Transfer Resistance 

If enzymes are immobilized within a structure, the active site 
may be located some distance below the surface of the structure.  It is 
appropriate to think of the enzyme molecules encapsulated in a 3-
dimensional matrix (Figure 3.10).  Two techniques used to achieve 
this encapsulation are copolymerization and microencapsulation.  
Substrate molecules must diffuse through the matrix to reach the 
active site.  The resulting mass-transfer resistance is known as 
internal resistance. 

 

Active
Site

Immobilized
Enzyme

Bulk Liquid
Static Layer

Surface

 
Figure 3.10—Enzyme molecules immobilized in a 
3-dimensional matrix. 
 

The following assumptions are used to create an idealized model, 
which will then be used to study the influence of internal mass-
transfer resistance. 

 
• The reaction occurs at every position within the matrix.  In 

actual fact, the active sites are randomly distributed in the 
matrix.  Reactions occur at these specific locations, not at every 
point within the matrix.  The model being developed is a 
distributed model and thus is an idealization of the actual 
reaction site geometry.  

Copolymerization—With this 
technique, enzyme solution is mixed 
with polymer solution.  The 
polymerized gel (containing the 
enzyme) is either extruded or a 
template is used to shape the desired 
particles. 

Microencapsulation—Microscopic 
hollow spheres are formed with the 
enzyme solution inside.  These 
spheres are then enclosed within a 
porous membrane which holds them 
in place. 
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• Mass transfer through the matrix occurs via molecular 
diffusion. 

• No mass-transfer limitation occurs at the surface. 
• The structure holding the immobilized enzyme molecules is a 

spherical particle. 
 
A spherical shell is defined within the spherical particle as shown 

in Figure 3.11.  This derivation considers internal resistance only, 
thus any substrate concentration gradient resulting from steps 1 and 
2 in Figure 3.9 is neglected.  The concentration at the particle surface 
(r = R) is taken to be CSb, the concentration in the bulk liquid. 

 

Direction of
Substrate
Diffusion

CsbR

dr
r

 
 
Figure 3.11—Model for diffusion of substrate into a spherical 
particle. 

 
The mass balance for the spherical shell is  
 

Input  − Output  + Generation  =  Accumulation 
 

Surface area of a sphere with radius r is 4π r2, and the volume is 4π 
r3/3.  Each of the terms in the mass balance will now be considered 
separately. 

Input: 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π dr 

dr
dC 

dr
d+

dr
dC D )dr+(r  4 SS

S
2  (3-94) 

 
where DS = diffusivity, and 
 r = inner radius of spherical shell. 
 
The term 4π (r + dr)2 is the surface area of the outer surface of the 
spherical shell.  dCS/dr is the concentration gradient at the inner 
surface of the spherical shell.  The rate of change of this gradient with 
respect to radial distance times the radial distance (thickness of the 
shell) is the increase in concentration gradient between the inner and 
outer surfaces.  Consequently, the term below is the concentration 
gradient at the outer surface. 
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Output: 

The output is the substrate that exits the inner surface of the 
spherical shell and continues toward the origin. 

 

dr
dC D r 4 S

S
2π  

Generation: 

Generation of substrate within the spherical shell is given by  
 

S
2 rdr  r  4 π  

 
where 4π r2 dr = an approximation of the shell volume, and 
 rS = rate of substrate consumption per unit 

volume.  
 
When substrate is being consumed, rS is negative, and the generation 
term represents a decrease in substrate concentration within the 
shell. 

Accumulation: 

dt
dCdr  r  4 S2π  

 
As before, 4π r2 dr is an approximation of the shell volume.  Note, 

if dCS/dt is negative, the whole term is negative, which means that 
mass is disappearing rather than accumulating. 

For steady-state conditions, dCS/dt = 0, and the mass balance 
becomes 
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Neglecting all terms with (dr)2 and (dr)3 and dividing through by 4π 
r2, we obtain  
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We assume substrate is depleted according to Michaelis-Menten 
kinetics, thus 
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and Eq. (3-96) becomes, 
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Dimensionless relations are defined as follows: 
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where R = outer radius of spherical particle. 

 
Using these relations, Eq. (3-97) becomes 
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Multiplying through by R2/CSb, we obtain 
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Eq. (3-99) can be simplified by applying Thiele’s modulus, defined by 
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D

r
3
R
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=φ  (3-100) 

 
where φ = Thiele’s modulus, 
 
and Eq. (3-89), which is restated as follows: 
 

 
m

Sb
K
C

=β   



Microbial Systems 

 
3-47 

 
Eq. (3-99) now becomes 
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This equation is a second-order differential equation with a 

spatial variable r’ as the independent variable.  Previously, the 
differential equations solved in this text have all been first-order and 
the independent variable has been time, t. 

Eq. (3-101) is rewritten as a set of first-order equations.  
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rd

CdY S
′

′
=  (3-103) 

 
The critical radius is defined as the radius where the substrate 

has been totally consumed (C’S = 0).  Physical and chemical 
constraints require the following boundary conditions: 
 
 At r’ = Rc/R, Y = 0; substrate concentration 

gradient is zero at the critical 
radius (Rc). 

 At r’ = 1, C’S = 1; substrate concentration 
equals CSb at the boundary of 
the sphere  

 
We also must choose initial conditions for the solution of the set of 
equations [Eqs. (3-102) and (3-103)] such that the boundary 
conditions are met.  These initial conditions are: 

 
Y = 0 at r’ = Rc/R 

C’S = C’So at r’ = Rc/R 
 
C’So is the substrate concentration at the critical radius.  If all the 
substrate is not consumed before reaching the center of the sphere (Rc 
= 0), then C’so > 1.  Both C’So and Rc are unknown.  How can we obtain 
solutions to Eqs. (3-102) and (3-103)?  We can choose a value of C’So 
and calculate the companion value of Rc that satisfies the initial 
conditions.  Or we can choose a value of Rc and calculate the C’So that 
satisfies the initial conditions. 

Solutions will be developed for both cases. 

Case 1  Slow enzyme reaction rate 

Rate of enzyme reaction is slow compared to rate of mass transfer 
(value of φ is low).  As a result, the substrate reaches the center of the 
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immobilized enzyme particle. C’S has some value greater than zero at 
r’ = 0. 

C’So > 0 at r’ = 0 (Rc = 0) 
 
In this case, Rc = 0.  We make an initial guess of C’So = 0 and 
integrate from r’ = 0.001 to r’ = 1.  If the value of C’S at the boundary 
is less than 1,C’So is increased and the integration is performed again.  
This “trial and error” technique is continued until we choose a C’So 
that gives C’S = 1 at r’ = 1. 

A method for increasing C’So (Lee, 1992) is 
 

C’So(new) = C’So(old) – 0.5 (C’S –1) 
 
C’S is the calculated substrate concentration at r’ = 1.  If C’So < 1, then 
C’So(new) will be greater than C’So(old).  The integration will be 
repeated with a larger initial value for the integration, 
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Case 2  Fast enzyme reaction rate 

Rate of enzyme reaction is fast compared to rate of mass transfer.  
Substrate is consumed before it reaches the center of the sphere.  At 
some critical radius (Rc), C’So = 0.  We do not know this critical radius.  
We choose a value for r’ < 1, integrate beginning with C’So = 0 and 
determine if C’S= 1 at r’ = 1.  If C’S > 1 at r’ = 1, we increase the initial 
value of r’ (point at which C’So = 0), and repeat the integration until 
C’S = 1 at r’ = 1. 

 

Modeling Example Problem 3.2—Immobilized Enzyme 
System, Solution for Case 1 

Advanced Continuous Simulation Language (ACSL) is another 
software package for solving sets of differential equations.  ACSL is 
written in Fortran, so those familiar with this language will be able 
to quickly learn how to use ACSL. 

The ACSL program written to solve Case 1 is given in Tables 3.3 
through 3.5.   

 
 

Table 3.3.  ACSL Program for Solution of Eqs. (3-102) and (3-
103, Case 1. 
PROGRAM PROB30 ACSL 

INTEGER N 
CONSTANT BETA=5. ,ERR=0.001, CSO=0.001 
CINTERVAL CINT=0.001 
VARIABLE R=0.001 

INITIAL $  ‘NOTE N IS AN INTEGER’ 
N=0 
10..N=N+1 $‘INCREMENT RUN COUNT’ 
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END $  ‘END OF INITIAL’ 
DERIVATIVE 

CS=INTEG(DCSDR,CSO) 
DCSDR1=–2.*DCSDR/R+9.*PHI**2*CS/(1.+BETA*CS) 
DCSDR=INTEG(DCSDR1,0.0) 

TERMT(R.GE.1) 
END $  ‘END OF DERIVATIVE’ 
TERMINAL 

IF(ABS(CS–1.).LT.ERR.OR.N.GT.10) GO TO 20 
CSO=CSO–0.5*(CS–1) 
GO TO 10 

20..CONTINUE 
ETA=DCSDR/((3*PHI*PHI)/(1+BETA)) 
WRITE(6,50) PHI,ETA,DCSDR,CSO,CS 

50..FORMAT(_PHI=’,F10.2,’ETA=’,F10.3,’DCSDR=’,F10.3,... 
‘CSO=’,F10.3,  ‘ CS=_,F10.3) 

END $  ‘END OF TERMINAL’ 
END $  ‘END OF PROGRAM’ 

 
 

Table 3.4.  Command file for ACSL Program for solution of 
Eqs. (3-102) and (3-103), Case 1. 

SET PHI=1.  —sets parameter values for this run 
PREPAR R,CS,  —these are the variables to be printed in the 

listing file 
SET CMD =5  —returns control to the keyboard 
 
If program is given in file PRB30A ACSL A, the listing file will be 

PRB30A LISTING A. 
 
 

Table 3.5.  EXEC file for ACSL Program for Solution of Eqs. (3-
102) and (3-103), Case 1. 

EXEC ACSL CLG PRB30A 
(CLG = Means Compile, Load, Go) 
(PRB30A = Name of file that contains ACSL Program) 
 

(After the program has been run once, this can be changed to LG 
meaning Load, Go.  The compile time is saved.) 
 

Variable names are as follows: 
φ = PHI 
β = BETA 
C’So = CSO 
C’S = CS 
r’ = R 
dC’S/dr’ = DCSDR 
η = ETA 
 
In the ACSL program, note the statement VARIABLE R = 0.001. 

This statement informs the program that the integration is with 
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respect to R and that the initial condition (point at which integration 
begins) is at 0.001.  The statement CINTERVAL CINT = 0.001 tells 
the program to use an integration step of 0.001. 

The statement CS = INTEG(DCSDR, CSO) corresponds to  
 

∫ ′
′

′
+′=′ rd 

rd
CdCC S

SoS  

 
Remembering that Y = dC’S/dr’, the statement 

 
DCSDR = INTEG(DCSDR1, 0.0) 

 
corresponds to 

 

rd 
C  + 1

C  9+Y 
r
2

S

S2 ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′β

′
φ

′
−= ∫  

The statement TERMT(R.GE.1) means stop the integration when 
R > 1.  In the TERMINAL section, we check to see if |C’S – 1| < 0.001 
or if N>10.  If not, we increment the initial value, C’So, and return to 
the INITIAL section to repeat the integration.  The statement 
WRITE(6,50) writes to the terminal screen. 

 
If you run this program with φ = 1, β = 5, you will find that it takes 
nine trials to obtain C’S = 1 at r’ = 1.  The initial condition for the 
solution is C’So = 0.757. 

 
 
 

Modeling Problem 3.2—Immobilized Enzyme System, Case 1 
This problem requires a MATLAB program to solve Eqs. (3-102) 

and (3-103).  It is analogous to Modeling Example Problem 3.2.  The 
same parameters are used. 

 
β = 5 
φ = 1 

 
It is appropriate to use C’So = 0.5 as the initial guess for the first 

trial.  Your program must be written to increase C’So until the 
integration from r’ = 0 to r’ = 1 gives C’S = 1 as a final value. 

The simulation cannot be started at r’ = 0 because Eq. (3-102) has 
division by r’.  It is appropriate to begin at r’ = 0.001. 

It is recommended that Δr’ = 0.001 be used, therefore, it takes 999 
steps (intervals) to get to the boundary (r’ = 1).  The final C’s (at r’ = 
1) should be within some error bound of C’S = 1.  For example, (C’S – 
1) < err where err = 0.001. 

 
1. For your simulation with φ = 1, collect your results for Trials 

1, 2, 3, 4, and “final” and plot C’S vs. r’ for these five trials on 
the same graph.  If you use the C’So(new) = C’So(old) – 0.5 (C’S 
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– 1) procedure, you should guess the correct C’So in less than 
10 trials.  Your graph should look like Figure 3.12. 

2. Repeat the simulations using φ = 0.1, 0.5, and 2.0.  Create a 
table as follows: 

 
φ η C’So(guess) C’So(actual) 

0.1    
0.5    
1.0    
2.0    

 
 
 

Modeling Problem 3.3—Immobilized Enzyme System, Case 2 
This problem requires a MATLAB program to solve Eqs. (3-102) 

and (3-103).  For Case 2, the reaction rate is so fast that the substrate 
is consumed before it diffuses to the center of the sphere.  We know 
C’So = 0 at some critical radius, Rc.  We have to guess the correct value 
of Rc. 

The parameters are: 
 
β = 5 
φ = 5.0 

 
It is appropriate to use the following initial values 

 
C’So = 0.001 
r’ = Rc/R = 0.32 
 

(Higher values of Rc will need to be used for the initial guess for 
higher values of φ.) 

It is recommended that an integration interval of Δr’ = 0.001 be 
used initially.  The error bound for (C’S – 1) < err should be err = 0.02.  
Again, this error bound may need to be changed up or down for 
different values of φ. 

 
1. Run your program for the following values φ = 5, 10, 20, and 

50.  Create a table as follows. 
 

φ η Rc (guess) Rc (actual) 
5    

10    
20    
50    

 
2. Create a log-log plot of the effectiveness ratio (η) vs. Thiele’s 
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Modulus (φ) using the Case 1 and Case 2 data (φ = 0.1 to φ = 
50).  Your plot should look like Figure 3.13.  Discuss your 
results. 
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Figure 3.12—Solution for Modeling Problem 3.2 Case 1. 
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Figure 3.13—Plot of effectiveness factor (η) vs. Thiele’s 
Modulus (φ) for β = 5, obtained using Case 1 and Case 2 
solutions. 
 

3.6  Using Monod Kinetics to Fit Biological Data 
Analogous to the Michaelis-Menten equation for enzyme kinetics 

is the Monod equation, which is used extensively to model substrate-
limited growth in both batch and continuous cultures.  The Monod 
equation (Monod, 1949) is probably the most commonly applied model 
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of microbial growth, and has been widely used for modeling the 
bacterial systems used for wastewater treatment.  

3.6.1 Monod Kinetic Model 

The Monod equation has the same form as the Michaelis-Menten 
equation with slightly different nomenclature, as follows 

 

 
K+C
C=

SS

Smaxμ
μ  (3-104) 

 
where μ = specific growth rate (T–1),  
 μmax = maximum specific growth rate (T–1),  
 CS = concentration of limiting substrate (M L–3), and  
 KS = Monod half-velocity constant (analogous to 

Michaelis-Menten constant) (M L–3).  
 
This equation generally holds only under conditions of balanced 

growth, not during lag or stationary phases (Figure 3.1), and should 
not be used when growth conditions are changing rapidly.  Also, there 
may be difficulty applying the equation under conditions of very low 
substrate concentration. 

Values of KS often are low in many biological processes (Table 
3.6).  If substrate concentrations are more than 10 times KS, which is 
often the case, then the reaction essentially is zero-order and 
independent of substrate concentration.  It is only when substrate 
concentration in the batch process is depleted to values closer to KS 
that specific growth rate μ declines below μmax.  At this point, large 
cellular mass and low substrate concentration may lead to a rapid 
decline in growth rate, which may lead to a stationary phase. 

 
Table 3.6.  KS values for several organisms (Pirt, 1975; Wang et 
al., 1979). 
Microorganism Limiting Substrate KS (mg L–1) 
Aspergillus Glucose 5.0 
Escherichia Glucose 

Lactose 
Phosphate 

4.0 
20 
1.6 

Pseudomonas Methanol 
Methane 

0.7 
0.4 

Saccharomyces Glucose 25 

3.6.2  Determining Kinetic Rate Constants 

In order to use the Michaelis-Menten or Monod equations, it is 
necessary to determine the Km and rmax constants for a given reaction.  
Methods exist for measuring the maximum overall rate of reactions, 
rmax.  This can be done by measuring rate of depletion of substrate or 
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rate of production of a product or a byproduct during the course of a 
reaction.  For example, rate of organic substrate reduction can be 
measured in a wetland, rate of pharmaceutical production can be 
measured in a bioprocess system, or rate of CO2 production can be 
measured in a fermentation tank.  Production rates of the various 
constituents in a reaction can be related by the stoichiometry of the 
reaction, as discussed in Section 3.2.4, to yield the rate of product 
formation necessary for Michaelis-Menten or Monod analyses.   

Km must be determined as well.  One method is to use 
experiments to determine k1, k2, and k3, and then use Eq. (3-47) to 
determine Km.  To do this, it is necessary to measure fluxes between 
reactant phases in both directions, which is outside the realm of this 
text. 

Another method commonly used in biological systems engineering 
is to determine Km directly from experimental data.  Product 
formation rates (dCp/dt or rp) and substrate concentrations (CS) are 
measured immediately after the reaction begins, before any substrate 
limitation or product inhibition can occur.  The initial substrate 
concentration (CS0) is taken to be the CS, and rp is measured for the 
shortest practical time-step at the beginning of the reaction.  This is 
repeated for a number of CS0 conditions.  A curve of rp vs. CS is then 
created, as shown in Figure 3.14.  The general rectangular hyperbola 
curve shape can be seen, but determining Km and rmax directly from 
this curve typically is difficult or impossible.   

Several methods have been developed for estimating these 
important parameters.  Each method uses a different derivation of 
the basic Michaelis-Menten equation [Eq. (3-46)] to create a linear 
solution to this equation.  With the linear transformation, a standard 
linear curve-fitting method can be used (such as those found on most 
spreadsheet programs) to determine the Km and rmax parameters. 
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Figure 3.14—Michaelis-Menten (rectangular hyperbola) 
relationship between reaction rate and substrate 
concentration. 
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Lineweaver-Burke Method 

The Lineweaver-Burke method transforms Eq. (3-46) into the 
following form: 

 

 
maxSmax

m
Smax

Sm

P r
1

C
1

r
K

Cr
CK

r
1

+=
+

=  (3-105) 

 
This equation has the form y = a x + b, where a = Km/rmax and b = 

1/rmax.  Thus, a plot of 1/rp vs. 1/CS would have y-intercept 1/rmax and 
slope Km/rmax.  In this equation, low concentrations of S influence the 
line more than high concentrations.  However, you should also realize 
that reaction rates are highest at high substrate concentrations.  
With most measurement methods, it is easier and more accurate to 
measure higher reaction rates.  Typically, instruments have a given 
measurement error, so a higher measured value translates into a 
smaller error expressed as a percentage of the measured value.  
Because the inverse of CS is plotted against the inverse of rp, the 
most-accurately known rate values (at high CS) are clustered near the 
origin.  This can be seen in Example 3.7. 

Eadie-Hofstee Method 

The Eadie-Hofstee method transforms Eq. (3-46) into the 
following form: 
 

 
( )

maxP
S
P

m

SmaxSmP

rr
C
rK

CrCKr

=+

=+

 

 

 
S
P

mmaxP C
rKrr −=  (3-106) 

 
Again, this linear equation greatly simplifies determination of Km 

and rmax.  A linear best-fit line through the data points of a plot of rp 
vs. rp/CS yields a y-intercept of rmax and a slope of –Km.  This method 
has less bias toward points at low CS.  However, both x and y 
coordinates contain the parameter rp, which is more difficult to 
measure than CS; thus, this method hinges on accurate measurement 
of rp.   

Hanes-Woolf Method 

The Hanes-Woolf method transforms Eq. (3-46) into the following 
form: 
 

 S
maxmax

m

P

S C
r

1
r
K

r
C

+=  (3-107) 
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So, a linear fit of an x-y plot of CS/rp vs. CS for a given data set 
produces a line with intercept of Km/rmax and slope 1/rmax.  This 
method has more bias toward the more-accurately measured high CS 
values.  Because of this, some researchers consider the Hanes-Woolf 
determination of rmax (from the slope) to be the most accurate.  
Differences between the three methods can be seen in Example 3.7. 
 
 

EXAMPLE 3.7 
Find rmax and Km using each of the three methods presented in 

Section 3.6.2.  Use the following data of initial reaction rates for 
various substrate concentrations. 

CS (mg L–1) rp (mg L–1 min–1) 
3.3 56 
5 71 

6.7 88 
16.5 129 
22.1 149 

 
Solution 

Raw Data 
Lineweaver-

Burke Eadie-Hofstee Hanes-Woolf 
CS rp 1/CS 1/rp rp/CS rp CS CS/rp 
3.3 56 0.3030 0.0179 16.9697 56.0 3.3 0.06 
5 71 0.2000 0.0141 14.2000 71.0 5.0 0.07 

6.7 88 0.1493 0.0114 13.1343 88.0 6.7 0.08 
16.5 129 0.0606 0.0078 7.8182 129.0 16.5 0.13 
22.1 149 0.0452 0.0067 6.7421 149.0 22.1 0.15 
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Lineweaver-Burke Method 

y-intercept: 1/rmax = 0.005  → rmax = 200 mg L–1 min–1 
slope: Km/rmax = 0.0432  → Km = 8.64 mg L–1 

Eadie-Hofstee Method 

y-intercept: rmax = 203.82  → rmax = 204 mg L–1 min–1 
slope: –Km = –8.9376  → Km = 8.94 mg L–1 

Hanes-Woolf Method 

slope: 1/rmax = 0.0048  → rmax = 208 mg L–1 min–1 
y-intercept: Km/rmax = 0.0449  → Km = 9.35 mg L–1 
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PROBLEM 3.7 
Find rmax and Km using each of the three methods presented in 

Section 3.6.2.  Use the following data of initial rates of an enzyme-
catalyzed reaction for various substrate concentrations. 

 
CS (mol L–1 × 10–5) rp (mol L–1 min–1 × 10–4)

410 1.77 
95.0 1.73 
52.0 1.25 
10.3 1.06 
4.90 0.80 
1.06 0.67 
0.51 0.43 

 

3.7  Microbial System Reactors 

3.7.1  Batch Reactor 

An ideal batch reactor is so well mixed that the contents can be 
assumed to be uniform at all times.  The pH is maintained by 
introducing a buffer solution using a pH controller.  Once the reaction 
has consumed the substrate or reached some predefined end-point, 
the reactor is emptied. 

A schematic of a batch reactor is shown in Figure 3.15(a).  The 
batch reactor has a detention time t equal to the time the contents 
remain in the reactor.   
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(a)   (b) 
 
Figure 3.15—Schematic diagrams for (a) batch and (b) steady-
state plug-flow reactors. 

 
If the reaction in a batch reactor is described by the Michaelis-

Menten equation [Eq. (3-46)], 
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dt
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dCr

Sm
SmaxSP

P −==   

 
then it can be solved analytically as follows.  Rearranging Eq. (3-46) 
yields 
 

 dtr=dC
C
dCK maxS

S

S
m −−  (3-108) 

 
Integrating and rearranging gives the solution 
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where CS0 = CS at time t = 0. 

 
The form of this equation is linear (y = a + b x), indicating that a 

plot of ln(CS0/CS) vs. t would produce a line with slope Km/rmax and 
intercept (CS0–CS)/rmax.  This form of the Michaelis-Menten equation 
is applicable for analyzing substrate concentration data taken at a 
number of times during a batch-reactor process, as long as the 
accumulation of product is small and does not inhibit the reaction. 

3.7.2  Steady-state Plug-flow Reactor 

In an enzyme-catalyzed plug-flow reactor, the substrate enters 
one end of a cylindrical tube that often is packed with immobilized 
enzyme, and a combination of unused substrate and product leaves 
the other end.  Because there is no stirring device, the properties of 
the flowing stream vary in both the radial and longitudinal direction.  
However, variation of the radial direction is much smaller than 
variation in the longitudinal direction.  If a plug-flow reactor is 
operated at steady state, the properties at any point within the 
reactor are constant with respect to time. 

A schematic of a plug-flow reactor is shown in Figure 3.15b.  In 
the plug-flow reactor, the reaction time is the dwell time τ. 
 

 
Q
V = τ  (3-110) 

 
where τ = dwell time (T), 
 V = volume of the reactor (L3), and 
 Q = volume flow rate (L3 T–1).  

 
Continuous operation of a reactor can increase reactor 

productivity significantly.  The reactor does not have to be shut down, 
emptied, and sterilized between batches.  As with the stirred batch 
reactor, analysis is based on the assumption that the contents are 
well mixed. 
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The substrate balance of a steady-state plug-flow reactor is 
 

Input – Output + Generation = Accumulation 
 
In equation form, 
 

 
dt
dCV

=Vr+CQCQ S
SS0S −  (3-111) 

 
where Q = volume flow rate (L3 T–1), 
 V = volume of reactor (L3), 
 rS = rate of substrate consumption for the 

enzymatic reaction (M L–3 T–1), and 
 dCS/dt = rate of change of substrate concentration in the 

reactor (M L–3 T–1).  
 
When Q is zero, rS is equal to dCS/dt, which is the case for batch 
operation. 

If the plug-flow reactor is operating at steady state, the substrate 
concentration in the reactor is constant.  Therefore, dCS/dt = 0.  If the 
Michaelis-Menten equation is substituted for rS, then Eq. (3-111) 
becomes 

 

 0=
CK

VCrCQCQ
Sm

Smax
S0S +

−−  

 
or 
 

 
)CK)(CC(

Cr=
V
Q

SmS0S

Smax
+−

 (3-112) 

 
The dwell time τ is related to flow and volume as shown in Eq. 

(110): 
 

 
Q
V=orQ=V ττ KK  

 
The reciprocal of the dwell time (or residence time) is known as the 
dilution rate. 
 

 
τ

1=D  (3-113) 

 
where D = dilution rate (T–1). 
 

Substituting  
V
Q=1

τ
into Eq. (3-112) and rearranging, 
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CC

CrK=C
S0S

Smax
mS −

τ
+−  (3-114) 

 
The Michaelis-Menten parameters, rmax and Km, can be estimated 

by running a series of steady-state plug-flow runs with different flow 
rates and plotting CS vs. CS τ/(CS0–CS).  However, it is more difficult 
to run steady-state plug-flow runs than batch runs, so the initial rate 
approach, previously described, is a better method. 

 

Modeling Example Problem 3.3—Michaelis-Menten 
Equation Numerical Solutions 

This problem was taken from Lee (1992).  A carbohydrate (S) 
decomposes in the presence of an enzyme (E).  Using experimental 
data, the Michaelis-Menten kinetic parameters were determined to be 
Km = 200 mol m–3 and rmax = 100 mol m–3 min–1.   

 
1. a) Write a MATLAB program that uses rectangular 

integration to calculate substrate concentration over time in a 
batch reactor.  Assume that the initial concentration is CS0 = 
300 mol m–3.   
b) Use Eq. (3-109), the analytical solution of Eq. (3-46), to 
obtain data to plot a CS vs. t curve.   
c) Plot this CS vs. t curve on the same graph as the curve 
obtained with rectangular integration. 

2. Repeat Step 1 using DESIRE to obtain the solution to the 
differential equation. 

3. Assume that the CS vs. t curve from Step 1 was obtained 
experimentally.  Estimate Km and rmax by plotting the (CS0–
CS)/ln(CS0–CS) vs. t/ln(CS0–CS) curve.  Is this approach reliable 
for the estimation of Km and rmax? 

 
The solution to Step 1 is plotted in Figure 3.16 and the tabular 

data given in Table 3.7.  The time step used for the rectangular 
integration in the MATLAB program was 1 sec. 

The solution to (Step 2) is given in Table 3.8.  The DESIRE 
program using Runge-Kutta fourth-order numerical integration gives 
a very accurate solution.  Comparison with Table 3.7 shows that the 
accuracy is equivalent to the analytical solution. 

The student should now have confidence in the use of DESIRE to 
solve a non-linear differential equation.  Writing the short MATLAB 
program to solve the differential equation and then comparing the 
results should have expanded understanding of the DESIRE 
program. 

The plot of (CS0–CS)/ln(CS0/CS) vs. t/ln(CS0/CS) is given in Figure 
3.17.  The slope is 99.47, which compares with rmax = 100.  The 
intercept is 200, which compares with Km = 200. 
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Figure 3.16—Graphical comparison of analytical and 
numerical solution for Modeling Example Problem 3.3 (Step 
1). 

 
Table 3.7.  Solution to Modeling Example Problem 3.3 (Step 
1). 

Time (sec) 
CS Obtained with 

Numerical Integration 
(mol m–3) 

CS Analytical 
(mol m–3) 

0 300.0 300.0 
1 240.0 242.5 
2 185.5 190.7 
3 137.3 145.2 
4 96.6 106.7 
5 64.1 75.6 
6 39.8 51.7 
7 23.2 34.2 
8 12.8 22.1 
9 6.8 13.9 

10 3.5 8.7 
11 1.8 5.3 
12 0.9 3.3 
13 0.5 2.0 
14 0.2 1.2 
15 0.1 0.7 
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Table 3.8.  Solution to Modeling Example Problem 3.3 (Step 2).

CS (mol m–3) using MATLAB CS (mol m–3) 
Time (sec) 

Δt = 0.1 Δt = 0.5 Δt = 1.0 DESIRE 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

300.0 
242.3 
190.2 
144.4 
105.8 
74.5 
51.6 
33.2 
21.2 
13.2 
8.1 
4.9 
3.0 
1.8 
1.1 
0.7 

300.0 
241.3 
188.1 
141.3 
101.8 
70.6 
46.0 
28.9 
17.5 
10.3 
6.0 
3.4 
1.9 
1.1 
0.6 
0.3 

300.0 
240.0 
185.5 
137.3 
96.6 
64.1 
39.8 
23.2 
12.8 
6.8 
3.5 
1.8 
0.9 
0.5 
0.2 
0.1 

300.0 
242.5 
190.6 
145.1 
106.7 
75.6 
51.7 
34.2 
22.0 
13.9 
8.6 
5.3 
3.2 
2.0 
1.2 
0.7 
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Figure 3.17—Plot to obtain slope and intercept of 
concentration data obtained for Modeling Example Problem 
3.3 (Step 3). 
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3.8  Summary 
Wetlands, compost piles, fermentation vessels, wastewater 

treatment reactors, anaerobic digesters, bioprocess operations, 
bioremediation of contaminated soils, and many other (in fact most) 
biological systems require the effective use of microorganisms.  These 
organisms are critical to the chain of reactions that interconnect 
plants, animals, soil, water, and air throughout the biosphere.  
Principles learned in this chapter will be reinforced in Chapter 4 for 
microbial compost systems, Chapter 5 for plants, and Chapter 7 for 
animals. 

Flow of Gibbs energy throughout the biosphere is enormous.  
Because this energy is diffuse, its magnitude is not appreciated in the 
same way as, say, a nuclear reaction.  When we as human beings 
learn to organize our activities such that we benefit from, rather than 
struggle against, the enormous biological potential around us, we 
become a positive force in the biosphere.  The basic premise of 
biological systems engineering as a discipline is the quantification of 
the biological potential (energy) in our surroundings.  Applying 
mathematics to analyze the activity of microorganisms is a key first 
step to the analysis of higher-order organisms presented in later 
chapters of this text. 
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