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ABSTRACT. Cover cropping is one of the conservation practices that could help alleviate soil health problems and reduce 

nutrient losses to water resources. Although there exist substantial scientific research and evidence about cover crops and 

their impacts on soil and water quality, they are based mainly on controlled field experimental trials. Currently, there is a 

limited understanding of spatial and temporal trend in cover cropping practices and their impacts at a landscape scale. 

Thus, the objective of this study is to develop a spatial and temporal inventory of winter cover cropping practices in a 

Western Lake Erie Basin, Maumee River watershed using satellite remote sensing. We created a long-term seasonal 

composites of satellite images (Landsat 5, 7 and 8) from 2008 to 2019. Then image-based covariates for 255 fields were 

used to develop a cover crop classification model based on the Random Forest algorithm. The image composites were then 

classified into four categories- (1) winter hardy, (2) winter kill, (3) spring emergent, and (4) not covered. The overall 

accuracy of the classification was 0.78, with kappa coefficient of 0.57 Our results show that more than 50% of the corn-

soybean area in the watershed was not covered with winter vegetation during 2008-2019 period. The total cover cropping 

area however has increased by about 40% in 2019/20 season compared to 2008/09 season. Based on our analysis of trend 

in winter weather, cover crops tend to perform well with higher accumulated Growing Degree Days and fall precipitation.  

Keywords. Cover crop, Remote Sensing, Machine learning, Western Lake Erie basin, Random Forest 
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1. Introduction 

There is a growing consensus that common agricultural practices are leading to a widespread soil degradation, poor soil 

health and water quality problems. Cover cropping has been recommended as one of the effective best management practices 

(BMPs) for addressing these problems while improving crop productivity and farm profitability 1,2. Cover crops help 

improve soil and water quality by reducing soil compaction, fixing nitrogen in soil, enhancing soil organic matter, and 

reducing nutrient losses through soil erosion and surface runoffs 3–6 Additionally, cover cropping has been found to provide 

several other ecosystem services including reduction of greenhouse gas emissions, control of weeds and enhancement of 

biodiversity 7–9.  

Cover crops can be in various forms including grass-legume, brassica, small grain, or their mixture that are grown during 

a fallow period between two growing seasons. Although they are not new to US agriculture system and have several 

environmental benefits, they are less adopted due to agronomic, economic and operational challenges 10. As such, there are 

several state and federal funding programs such as NRCS Environmental Quality Incentives Payment (EQIP) and 

Conservation Stewardship Program (CSP) that have promoted the adoption of BMPs including cover crops to promote soil 

health and mitigate widespread water quality problems. According to 2017 Census of Agriculture, national cover crop 

acreage increased by 50 percent from 2012 to 2017, with several states including Ohio doubled their acreage. Based on the 

survey, the total cover crop area of Ohio in 2017 was 7% of the total cropland in the state. Although helpful, surveys provide 

an incomplete representation of the overall practices on the ground and thus do not provide information about the spatial 

and temporal coverage of cover crops at a landscape scale. Further, surveys are expensive to conduct at a larger geographic 

scale and are often biased. Similarly, most of our current understanding of cover crop are based on field-scale trials at limited 

fields, and thus findings may not be transferrable to other cover crop growing sites.  

Remote sensing, particularly satellite-based imagery, offers a promising approach to cost-effectively and timely detect 

and monitor vegetation health at a landscape scale. This capability has recently been bolstered by a wide availability of a 

large volume of data from frequently revisiting medium-resolution satellites such as Landsat (30 m) and Sentinel (10 m) at 

free of cost. Green and healthy vegetations have higher reflectance in near-infrared (NIR) region than other spectral region, 

and thus, prior studies have leveraged satellite imagery in the visible and NIR region (VIS-NIR) to understand and classify 

difference in crop health 11–13 . Data including 30-meter National Land Use Land Cover and annual cropland data layer are 

some of the key applications of satellite-based remote sensing 2,14–18, which were derived from Landsat satellite and other 

digital data 19. In contrast to broad land use land cover classes, cropland areas are dynamic and change over both spatial and 

temporal scales because of several factors including growing season, management practices and environmental conditions. 

In such, remote sensing data have been proven valuable for large area crop type as well as crop related land use classification 

because of its large and repeated coverage suitable for capturing different growing patterns of different crops 18,20.   

There are a few prior studies that have used satellite-based remote sensing data to classify and monitor winter cover crops 

at a landscape scale on limited geographic regions 21–26. For instance, Hively et al (2015) assessed cover crop areas in 

Chesapeake Bay watershed in southeastern Pennsylvania using satellite data and reported increase in cover crop adoption 

between 2010 and 2013 26. It was based on one-time best Landsat and SPOT imagery during late winter. In another study, 

Landsat-7 and Landsat-8 satellite images from fall and spring were used in combination with ground collected NDVI 

threshold to identify cover cropped fields 21. Both these studies applied the calibrated threshold on the single one-time 

satellite images and also reported missing data due to cloud cover or scan line error of Landsat-7. This also limited the study 

to only specific location where the data were available consistently. Seifert et al (2018) mapped cover crop areas from 2008 

to 2016 over the eight Midwestern states combining multiple Landsat satellite images (Landsat 5, 7, and 8) from each cover 

crop growing season (i.e., October - April) as a single seasonal composite 24. This allowed them to get rid of incomplete 

coverage or gaps in the images and derive a consistent coverage for whole study area unlike previous studies. Although 

helpful, single composite of satellite data for each growing season smooths out temporal variability in cover crop phenology, 

and thus it becomes difficult to quantify their characteristics (e.g., winter kill, winter hardy, spring emergence, no cover) 

other than absence or presence on the fields. Unlike Seifert et al (2018), Hagen et al (2020) (estimated timing and intensity 

of greenness of cover crops based on a time series of the normalized difference vegetation index (NDVI) from November 

through July of each crop year and compared to threshold sets at the HUC8 scale to determine cover crop status in the 

midwestern United States from 2005 to 2018 22. It seemed like the HUC8 threshold set were selected based on integration 

of ground-truth and satellite imagery beforehand. Although the study did not explicitly mention on how they use all the 

images (individually or developing composites), it showed that we can utilize the variability in the growing pattern to identify 

different types of winter covers on the croplands. This can be still achievable with the use of compositing technique, 

increasing the number of seasonal composites can enable us to capture sub-seasonal growth patterns. This also helps avoid 

the need for several satellite observations for all pixel’s location to one or more predetermined periodic representations 27. 

Additionally, the recent developments in cloud processing platforms such as Google Earth Engine (GEE) has provided the 

scientific community a tool to access a vast pool of satellite imagery as well as process images using state-of-the-art data 
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analytics while addressing the computational time and efficiencies 28. As such, in recent years, GEE has emerged as a 

valuable tool for conducting regional- 29–31 to global-scale earth observation-based research studies 32,33.  

The objectives of this study are to 1) quantify the spatial and temporal trends of winter covers in the Maumee river 

watershed, one of the largest watersheds in the Great Lakes basin, between 2008 and 2019 by integrating historical satellite 

time-series data with ground-truth observations in the GEE platform, and 2) examine the spatial and temporal patterns of 

cover crop growth in relation to weather, mainly precipitation and temperature, at a landscape scale. 

2. Methods 

2.1 Study Area 

Although Western Lake Erie basin 

has been continuously highlighted as 

one of the most impaired basins, there 

are not many studies studying the trend 

of conservation practices in the region. 

The study was conducted in the Maumee 

River watershed in the northwest Ohio, 

where agriculture is the predominant 

land use (Figure 1). About 80% of this 

watershed is in corn and soybean 

production, and studies have related 

intensive agricultural practices 

associated with corn and soybean 

production in this region as the primary 

drivers of more than 85% of 

phosphorous loads to the Maumee River, 

which eventually drains to the Lake 

Erie34,35. This has been the primary 

reason for increase in harmful algal 

blooms, causing undesirable impacts on 

fish habitat, decreased recreational uses 

of waterways, problems in drinking water 

supplies, and increased costs of water 

treatment and managing freshwaters. 

Since cover crops can provide a ground cover that reduces runoffs and increases infiltration of water into the soil, there is 

increasing interest on cover crops as one of the conservation practices to mitigate these problems in recent years 5. However, 

surveys have suggested a slow adoption of cover crops by farmers in this watershed, only 16.8%, 17.6%, and 11.9% of 

farmers adopted cover crops on their low, medium and highly productive fields respectively (2014 survey) 36 . 

2.2 Data 

Satellite Data Acquisition and Processing 

In the study, images covering northern and north-west part of Ohio collected by Landsat satellite 5, 7 and 8 between 2008 

to 2020 were used. The selection of images from various Landsat missions was based on their lifespans and availability of 

historic time-series satellite data (Table 1). The satellite images with cloud cover less than 50% were collected for each 

growing season of cover crop (October – April of following year) for the entire study period. 

To facilitate easier and faster preprocessing and analyses of these satellite data, Google Earth Engine (GEE), a cloud-

based platform developed and made publicly available by Google 28, was used. Specifically, we used JavaScript based Earth 

Engine Code Editor to process Level-2 surface reflectance (SR) products from Landsat, which were corrected for 

atmospheric attenuation and disturbances on each individual scene. SR data products from Landsat 5 and 7 were derived 

using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) developed by National Aeronautics and 

Space Administration (NASA) and the University of Maryland 37. Meanwhile SR data products from Landsat 8 were 

generated using Land Surface Reflectance Code (LaSRC) developed by NASA and later updated by USGS Earth Resources 

Observation and Science (EROS) Center 38. We used Quality Assessment (QA) band generated using CFMask algorithm 39 

to all the Landsat scenes to get rid of unwanted contamination of image pixels due to cloud, cloud shadow, and snow and 

provide accurate representation of vegetation health. 

 

 

Figure 1: Maumee River watershed spreading over Ohio, Indiana, and Michigan in the 

Midwest United States. A large portion of watershed is used for agriculture mainly corn and 

soybean. Field data used in the study are highlighted in yellow. 
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Table 1: Landsat satellites missions considered for the study 

 

 

 

 

 
Despite the fact that the images are collected by same satellite system, there exist slight differences in the spectral signatures 

of same object when analyzed using data based on three Landsat missions (Thematic Mapper (TM), Enhanced Thematic 

Mapper Plus (ETM+), and Operational Land Imager (OLI)). For both soil surfaces and vegetations, Roy et al (2016) 

observed higher Normalized Difference Vegetation Index (NDVI) derived from ETM+ images compared to those derived 

from OLI images 40. The study developed spectral transformation functions between OLI and TM/ETM+ data by fitting an 

ordinary least squares (OLS) regression with r2 > 0.7 for reflectance and > 0.9 for NDVI. The slopes and intercepts of this 

equation corresponding to each individual band are shown in the Equation 1. 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = [0.0003, 0.0088, 0.0061, 0.0412, 0.0254, 0.0172] 𝑓𝑜𝑟 (𝐵𝑙𝑢𝑒, 𝐺𝑟𝑒𝑒𝑛, 𝑅𝑒𝑑, 𝑁𝐼𝑅, 𝑆𝑊𝐼𝑅1, 𝑆𝑊𝐼𝑅2)𝑆𝑙𝑜𝑝𝑒𝑠
= [0.8474, 0.8483, 0.9047, 0.8462, 0.8937, 0.9071] 𝑓𝑜𝑟 (𝐵𝑙𝑢𝑒, 𝐺𝑟𝑒𝑒𝑛, 𝑅𝑒𝑑, 𝑁𝐼𝑅, 𝑆𝑊𝐼𝑅1, 𝑆𝑊𝐼𝑅2) 

𝑆𝑙𝑜𝑝𝑒𝑠 = [0.8474, 0.8483, 0.9047, 0.8462, 0.8937, 0.9071] 𝑓𝑜𝑟 (𝐵𝑙𝑢𝑒, 𝐺𝑟𝑒𝑒𝑛, 𝑅𝑒𝑑, 𝑁𝐼𝑅, 𝑆𝑊𝐼𝑅1, 𝑆𝑊𝐼𝑅2) 

Equation 1: Band specific transformation coefficients in terms of slope and intercept of the regression between ETM+ and OLI spectral space 

(Roy et al., 2016) 

To ensure these differences are resolved for long-term time series analyses, TM and ETM+ based images were 

transformed into OLI spectral space using the slopes and intercepts value in equation 1. This process is also called 

harmonization, which has been found to be useful in eliminating several issues that are part of satellite data such as missing 

data due to SLC off, cloud cover, and shadow removal 15,41.  

Since our study region is big, it was difficult to find a series of individual image scene covering the same geographic 

extent across multiple dates during the growing season. To capture crop phenology by analyzing images collected at multiple 

dates, we implemented a concept of seasonal composites by considering mean or median of satellite images collected during 

a given cover crop growing season 31,42–44. Typically, the choice on the number of seasonal composites detects how closely 

the variabilities in a growing season needs to be assessed.  

To determine the number of seasonal composites suitable for analyzing and monitoring the growth and extent of cover 

crops at a landscape scale, we plotted historical normal temperature profile (minimum, mean, and maximum) which was 

computed taking average of data from 8 locations across the Maumee River watershed. In the study region, we found that 

the month of December marks the start of cold winter (i.e., extreme weather condition unsuitable for cover crops growth) 

(Figure 2). Therefore, we divided the cover crop growing season into two time periods: Fall (before the onset of winter; 

most of the growth occurs in the month of October and November) and Spring (both winter and spring months; the significant 

growth occurring in the months of March and April) 45. It was assumed that some cover crop species like cereal rye are cold 

tolerant in comparison to other species and can make all the way from fall to spring, while others are not tolerant and thus 

get terminated before winter or naturally die. Some species that are not able to grow properly during fall months show some 

growth during spring.  

 

Figure 2: Historical mean weather plotted based on average of weather data from 8 locations in the Western Lake Ere basin. The data was 

collected from PRISM Climate Group 46which provides 1895 to the present climate information. 

Dataset Data Products Spatial resolution Temporal 

resolution 

Launch Data Availability 

Landsat 8 OLI Level-2 SR 30 m 16 days 2013 2013-Present 

Landsat 7 ETM+ Level-2 SR 30 m 16 days 1999 2000-Present 

Landsat 5 TM Level-2 SR 30 m 16 days 1984 1984-2012 
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We also used a harmonic analysis (also known as Fourier transformation) on Landsat 8 TOA NDVI computed by 

averaging all the pixels inside the cover crop fields (Figure 3), to analyze and characterize the underlying seasonal phenology 

of cover crops in the study region 47. Fourier series or Fourier transform models any time series data as a combination of 

sine and cosine curves parametrized by amplitude/phase as well as distribution of frequency (Ryan, 1971; Davis et al., 1986). 

While amplitude is computed as half the height of a wave, phase is determined by how off the peak of the curve from the 

origin (0 to 2π). Addition of successive harmonics in the transformation brings the curve closer to the original curve. Similar 

to prior works 48,49, we found that cover crops follow bimodal structure and the amplitude of second order harmonic was 

dominant for about 73% of the total fields (Figure 3). 

 

 Figure 3: Second order harmonic. These curves are based on only the initial 255 fields from Erie and Huron counties. The NDVI value for 

each date is the average of all pixels within the field boundary. 

To capture these seasonal dynamics, two seasonal composites of satellites data were prepared. First composite for October 

to December and second composite for January to April (Figure 3). While preparing these composites, the median of pixel 

values for a corresponding period were considered. Since the focus of the study was to assess cover crop presence on fields 

in corn and soybean rotation during summer, these seasonal composites were masked using 30 m resolution annual Cropland 

Data Layer (CDL) created by National Agricultural Statistics Service (NASS) 50 and is available in the GEE platform. 

Issue of incomplete coverage and missing data 

Despite the temporal aggregation of satellite images, some data gaps were observed in seasonal composites, particularly, 

2012/2013 for the first composite, and 2009/10, 2012/2013, 2014/2015, 2017/2018 for the second composite. This was 

mainly driven by 16 days temporal resolution of Landsat satellite data in combination with frequent cloud cover and snow 

cover. To address this concern, we used fused and smoothened images derived using the Highly Scalable Temporal Adaptive 

Reflectance Fusion Model (HISTARFM) algorithm for the areas with such data gap. This algorithm uses 16-day Landsat 

and daily MODIS to produce monthly images at Landsat resolution i.e., 30 m 51. Despite some differences in the range of 

wavelength covered by this product in comparison to Landsat 8 OLI, the study 51 found a good correlation (0.85-0.92) 

between the original Landsat band reflectance and the predicted HISTARFM band reflectance. 

In addition to individual median bands, we created and added several commonly and widely used vegetation indices 

(VIs), such as NDVI 13,24,44,49,52,53, Difference Vegetation Index (DVI), Normalized Green Red Difference Index (NGRDI) 54 

and Ratio Vegetation Index (RVI) 55 on the composites. Similarly, we created and added minimum, and maximum composites 

of NDVI as they have been proven as useful as median composite in mapping of crops 14,24.  For this, we used pixel-based 

reducer function in GEE. As such, each composite consisted of 12 bands (Table 2), with each band representing a feature of 

image pixels on a particular season. Each season thus has two composites: composite 1 (October to December) and 

composite 2 (January to April) (Figure 4). 
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Figure 4: Landsat satellite image composites after gap filling and are displayed using natural color bands. For each winter season, two composites 

are created. Composite 1 represents fall growth (from October to December) and 2 represents spring growth (from January to April).  

Table 2: Bands and indices that are included in each seasonal composite. Each of these components are treated as features of the pixels. 

Composite Band Description Composite Band Description 

Blue_median Median of blue band DVI_median Median of DVI 

Green_median Median of Green band NDVI_median Median of NDVI 

NIR_median Median of NIR band NDVI_max Maximum of NDVI 

Red_median Median of Red band NDVI_min Minimum of NDVI 

SWIR1_median Median of SWIR1 band NGRDI_median Median of NGRDI  

SWIR2_median Median of SWIR2 band RVI_median Median of RVI 

Note: NIR – Near Infrared, SWIR – Shortwave Infrared, DVI – Difference Vegetation Index, NDVI – Normalized Difference 

Vegetation Index, NGRDI – Normalized Green Red Difference Index, RVI – Ratio Vegetation Index 

Field data 

A total of 657 cover crop fields across five counties in Northern Ohio (Figure 1) were used for analyses. Of these fields, 

information about 255 fields were gathered between 2015 to 2018 by Cover Crop Aggregation Program from Erie and Huron 

counties. Additional 402 records were based off tillage transect surveys from 2015 to 2019 in Fulton, Hancock, and Crawford 

counties in Ohio. These field points were digitized to their corresponding field boundaries. The field boundaries were then 

buffered inward by 30 m (equals to the Landsat resolution) to get rid of any potential mixed pixels during field data extraction 
24. For each winter season, there were different numbers of cover crop fields (Table 3). Although these fields were observed 

to have ground covers during the time of survey, it does not mean the fields were covered throughout the season, which can 

be influenced by weather, field conditions, and management practices.  

To analyze the growth pattern or phenology of cover crops, we first applied a threshold of 0.3 on the average NDVI of 

cover crop fields. Based on this threshold, we filtered and labelled the fields into four categories: winter hardy (significant 

growth in fall and spring), winter kill (significant growth only in fall), spring emergent (significant growth in spring), and 

not covered (no significant growth in both periods). The NDVI value greater than 0.3 corresponds to the low to high 

vegetation cover of winter crops 25,26. 

 
Table 3: NDVI criteria to characterize winter cover crops growth. It was computed by averaging all the pixels inside a field boundary during fall 

and spring season.  

Criteria Class Number of fields 

Fall NDVI and Spring NDVI >= 0.3 Winter-hardy 338 

Fall NDVI > =0.3and Spring NDVI < 0.3 Winter kill 134 

Fall NDVI < 0.3 and Spring NDVI > =0.3 Spring emergent 24 

Fall NDVI and Spring NDVI < 0.3 Not covered 132 

Note: 29 fields had missing pixels because of masking with annual CDL. These fields were not on either corn or soybean in 

those years. Field numbers by cover crop season: 135(2015/16), 185(2016/17), 84(2017/18), 87(2018/19), 166(2019/20) 

 



ASABE 2021 Annual International Meeting Page 8 

Fields were then randomly split into training (60%) and validation (40%) groups. This was done to get rid of 

spatial autocorrelation that could arise from splitting the pixels from the same field into training as well as 

validation data 24,42.. For each field in training and validation group, we sampled the corresponding year’s image 

composites.  This resulted in 38,632 pixels for training and 30,124 pixels for validation. 

2.3 Cover crop classification 

While several algorithms are available to detect and classify crops and vegetation on satellite images, one of the critical 

questions is performance and accuracy. Among different machine learning algorithms, Random Forest (RF) classifier has 

become one of the most popular and widely applied in remote sensing community in recent years 17,56–58. RF has been found 

to consistently outperform other classification algorithms particularly for applications related to crop classifications 59–61. 

Similarly, it is robust against noise and overfitting, easier to train, and can handle high data dimensionality 62,63. It is an 

ensemble of individual uncorrelated decision trees, created from the random bootstrap samples that use randomly selected 

subset of features 64. The final output of this algorithm is calculated by aggregating outputs from all the decision trees, with 

a majority of voting used for classification and averaging of outputs for regression. It implements the bagging technique to 

randomly sample the data with replacement, and thus, it is expected to perform well even with small training dataset 65. The 

only parameter we care most in common practice is the number of decision trees, increasing this number improves overall 

accuracy of the classification 64. Other parameters that can be changed are the size of bootstrap sample, and number of 

feature subset chosen at each node split. Although RF is not sensitive to number of features at each node in decision trees, a 

common practice for subset size is square root of the number of features in the data 63,66 

We performed the sampling of field data within the GEE platform and combined them separately in python programming 

platform. The sampled data were aggregated together, we ran few trials in python to set the parameters up because of 

flexibility in python. We then uploaded the aggregates of sampled data back to the GEE platform. The randomForest 

classifier in GEE requires six arguments: numberOfTrees (default: 1), variablesPerSplit (default: square root of number of 

variables), minLeafPopulation (default: 1), bagFraction (default: 0.5), outOfBagMode (default: false), and seed (default: 0). 

We set the tree numbers to 500 based on commonly used practice 63 and other variables to default.  

The classifier was trained using the sampled data and the accuracy of trained classifier was tested using an independent 

set of validation data. We evaluated the accuracy of classification results using the confusion matrix, which shows the 

distribution of classification results for the independent validation data sets against their true classes. We use metrics such 

as overall accuracy, Kappa coefficient, producer accuracy (PA) and user accuracy (UA). While an overall accuracy provides 

an average of accuracy for all classes considered, PA and UA provide the distribution of classification errors among the four 

classes. PA explains how many pixels for a particular class is classified correctly with respect to the actual number of pixels 

labeled on that class. UA explains how many pixels on the classified map truly represent the actual classes. After testing of 

the trained RS classifier, it was then used for classifying the seasonal composites from 2008/09 through to 2019/20 winter 

season into the four classes: winter hardy, winter kill, spring emergent, and not covered. Although the spatial extent of the 

images and classification was for most of the northern parts of Ohio including the Maumee River watershed due to the 

availability of training data from counties across the Western Lake Erie basin, we have shown findings only for the Maumee 

watershed in this work. Similarly, the findings have been shown only for fields that have been in corn and soybean rotation. 

2.4 Weather variability and cover crop areas 

We computed the GDD in GEE using the PRISM Daily Spatial Climate Dataset with spatial resolution of 2.5 arc minutes 

which is equivalent to 4 km. Daily mean temperature was used setting up the base temperature at 5 °C. Meanwhile the 

calculation was performed for the two periods of a season: fall (start of October to end of December) and spring (start of 

January to end of April). GDD for each day was calculated as 

 

GDD = Tmean – Tbase, 

Where Tmean is daily average temperature calculated as (Tmin + Tmax)/2 

Tbase is the base temperature. If the average temperature was lower than the base temperature, then GDD was set to zero. 

 

The accumaulated GDD for the two seasons (fall and spring) were computed by taking the sum of all the GDD during 

the period. For example, to obtain accumulated GDD for Fall of 2019, we added all the GDD value during October – 

December period. Similarly, we also extracted total accumulated precipitation during the months of October and November 

using the same PRISM Daily Climate dataset. It was done by taking the sum of all the pixels of daily precipitation raster 

data during that period. We repeated the process for every cover crop season from 2008/09 until 2019/20 and compared the 

trend with the annual cover crop areas to understand if there is any relationship between weather and abundance of cover 

crops at a landscape scale. 
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3. Results 

3.1 Accuracy assessment 

The RF classification resulted in overall accuracy (OA) of 74% and Kappa coefficient of 0.63 (Table 4). While winter 

hardy (75.39% and 82.56%) and no cover (80.84% and 80.33%) classes had higher PA and UA, winter kill class had 

moderate values of PA and UA (66.79% and 64.47%) and the spring emergent class had the lowest PA and UA (57.42% and 

40.07%). Most of the misclassification of this spring emergent class has occurred to the no cover and winter hardy class as 

observed on the confusion matrix.  

 
Table 4: Accuracy of classification results presented via confusion matrix. 

 Predicted 

G
ro

u
n

d
 T

ru
th

 

Class 
Winter 

hardy 
Winter kill 

Spring 

emergent 
No cover Total PA 

Winter hardy 8,168 895 813 958 10,834 75.39% 

Winter kill 1,144 4,300 7 987 6,438 66.79% 

Spring emergent 279 37 843 309 1,468 57.42% 

No cover 302 1,438 441 9,203 11,384 80.84% 

Total 9,893 6,670 2,104 11,457 30,124 
 

UA 82.56% 64.47% 40.07% 80.33%   

 Overall Accuracy 

74.7% 

Kappa 

0.63 

Note: The rows indicate the actual values of pixels whereas the columns represent predicted values. The diagonal cells 

highlighted by color represent number of correctly classified pixels. 

3.2 Cover crop areas: pixel-level estimates and temporal patterns 

The pixel level classification of satellite image composites showed that a small area of the watershed was covered for 

most of the time between 2008-2019 (Figure 5). The area of cover crops ranged between 10% and 34%, with 2011/12 and 

2019/20 having the highest percentage of watershed in cover crops and 2010/11, 2012/13, and 2014/15 with least percentage. 

 

Figure 5: Classification result for all the winter seasons considered in this study for Maumee River watershed. The four classes are represented by 

different color codes. 
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Figure 6: (a) 2019/20 classification result, (b) October-December composite and (c) January-April composite are shown using natural color display 

of median of Red, Green, and Blue bands. (d) Classification result. (b-d) are zoomed in for an area within (a). 

When these areas were evaluated against areas in corn/soybean rotation, it was found that except for 2011/12 and 2019/20 

winter seasons, less than 50% of the corn-soybean area in the watershed were in cover crops. While the total corn-soybean 

area did not change much except for 2019-20 season, we observed variability in the cover crops across the seasons. Although 

a large percentage of area was covered during fall of 2019/2020 (Figure 6), we found a few percentages of those covers 

staying on the ground until spring.  Similarly, the 2009/10 season had almost 80% of the corn-soybean area without any type 

of cover and less than 10% for all three cover classes. If we look at the whole time series, cover crop areas (winter hardy, 

winter kill and spring emergent) seem to have increased from 2008/09 until 2010/11 season. After that, we do not observe 

any remarkable increase as the larger percentage of winter kill in 2019/20 can be attributed to the decreased corn-soybean 

area (Figure 7).  

 



ASABE 2021 Annual International Meeting Page 11 

 
 
Figure 7: Seasonal variability of winter cover crops between 2008 – 2019. Note: The % area of each class was computed relative to total annual 

corn-soybean area in given year. The x-axis represents the winter season. The total cover crop area is the sum of three cover crop classes: winter 

hardy, winter kill, and spring emergent. The secondary y-axis is for total cover crop area and corn-soybean area in terms of million acres.  

When we combine the three different types of cover crops (winter hardy, winter kill, and spring emergent, we can observe 

this uneven trend in cover crop areas over the years. Although the total area has increased by about 40% in 2019/20 season 

compared to 2008/09 season, it went through number of increase and decrease patterns within space of single season as 

shown in Figure 7. 

3.3 Effects of weather on variation in winter cover 

While evaluating winter cover in relation to GDD for fall and spring, GDD was found to be relatively higher for fall of 

2011, 2015-2017, and spring of 2010, 2012, 2016, and 2017. In these years, the area of winter hardy class is higher which 

is also indicated by the strong correlation in Figure 8. Similarly, the spring emergent was higher for 2009, 2011, 2012, and 

2016. Regarding the winter kill class, it is correlated well with GDD during fall of 2011, 2013, and 2016. However, it 

deviates strongly for the 2019 which is also reflected on the weaker correlation (-0.12). Higher amount of GDD throughout 

the season means more favorable time for full growth of cover crops. This shows that GDD can explain some of the 

variability in different types of covers during the cover crops seasons. 
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Figure 8: Relationship of cover crops with Growing Degree Days (GDD) and Fall precipitation. Note that the first part in season indicates fall 

season while the second part indicates spring. For example, if the season is 2008/09, fall season is in 2008 whereas spring in 2009.  

The accumulated precipitation was higher for fall of 2011, 2017, and 2018 cover crop seasons. These seasons had 

relatively larger area of covers (Figure 8). The 2011/12, 2015/16, and 2016/17 seasons are observed to have highest GDD 

(both fall and spring) as well as accumulated precipitation during fall (Figure 8-11), suggesting that higher accumulative 

GDD and fall precipitation help promote establishment of cover crops and their growth through the season. 

 

Figure 9: Growing Degree Days during fall calculated for the Maumee River watershed using PRISM daily temperature data at 4 km spatial 

resolution. The years indicated in this figure correspond to the years for fall seasons. 
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Figure 10: Growing Degree Days calculated for spring. The years indicated here is for the spring months of the following year. 

 

Figure 11: Total precipitation for the fall months of October and November. It is based on PRISM daily precipitation raster data with spatial 

resolution of 4 km. The years indicated in this figure represent the years of the fall months of October and November. 

4. Discussions 

In this study, we developed a framework to use publicly available Landsat satellite images to identify four types of winter 

cover on the corn and soybean rotated fields in the Maumee River watershed. For this, we first prepared the database of 

fields with cover crops through digitization of tillage transect and survey data. Although these fields were labeled as cover 

cropped, they were based on a one-time survey, and no additional information on cover crop growth stages during the season 

were provided. Therefore, the fields were grouped into four categories – winter hardy, winter kill, spring emergent, and no 

cover, which were derived based on their average greenness i.e., NDVI during fall and spring of the cover cropping seasons. 

We then extracted spectral information for all the pixels within these fields using satellite image composites, and then trained 
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a RF classifier. The overall classification accuracy was 75%, and there are few areas that needs to be considered to this 

number. We believe having this kind of spatial and temporal information on cover cropping could be valuable to policy 

makers as well as funding agencies to localize the area in need of interventions for supporting adoption of cover cropping 

practice. Further, it also provides basis for conducting studies on assessing the effectiveness of the practice. 

4.1 Training data size 

One of the major challenges in performing a pixel level classification is the need to address spatially autocorrelation. If 

pixels in training and validation dataset are highly correlated, it may then lead to overestimation of classification accuracy 

as well as too many misclassifications. To address this concern, the pixels from same fields are not included both in training 

as well as validation data. While this helps in eliminating the most common form of spatial correlation among the pixels, 

there are still some forms of misclassification on the final estimation.  In the study, we used a total of 657 fields as a basis 

of classification. Although there is no set standard for the training and testing data size suitable for classification problems 

like this, given the size of landscape used in our study, we expect increase in classification accuracy with additional ground-

truth data. Additionally, we did not have ground-truth seasonal cover crop growth information. Although the fields were 

marked as cover crops, the satellite imagery consistently showed low vegetation during the growing season in some of the 

fields. While we relied on analyses of NDVI to assess seasonal cover crop growth, ground-truth information would help 

enhance the accuracy of our cover crop classification model. 

In the study, we assumed that all the green areas in the corn and soybean fields during months of October – April are to 

be in cover crops. However, all the green areas are not necessarily cover crops; they could be either weed or grass or other 

crops. So, caution needs to be paid while interpreting some of these results.  

In the study, misclassification was prominent for the spring emergent class and this can be attributed to fewer training 

and test dataset. Of 657 fields, we found 24 to be in spring emergent class based on NDVI phenology. Similarly, the average 

NDVI value greater than or equal to 0.3 was used as a criterion to classify images into four groups. In this process, anything 

below 0.3 would be classified as no cover crops even if  there are some vegetation on the ground for both fall and spring 

seasons 25. Additionally, when the fields were grouped into four classes based on the mean seasonal NDVI, there could be 

areas within the field with NDVI that are either higher or lower than the average Since all the pixels within a field are labeled 

same and are used for training, this can lead to misclassification if there is high with-in field variability. This is part of the 

reason why a large proportion of spring emergent pixels were misclassified as no cover and winter hardy classes. By 

increasing the number of training data in the classification model, the model will be able to separate spectral variability 

between classes, and thus resulting in higher accuracy.  

In the classified cover crop maps, we observe a lot of within-field variation. This is partly driven by the fact that we used 

pixel-based classification, meaning spectral signature of a given pixel is assessed independent of its surrounding pixels. 

There were pixels that were completely different from their neighboring pixels, which can result while using composite 

images from multiple satellite sensors. Although compositing helps to fill in missing data (especially in case of Landsat 7), 

we observed some forms of artifacts when images have a high amount of scan line errors, which is one of the concerns that 

are difficult to address when it comes to application of satellite images. 

4.2 Variation in winter cover and effects of weather 

Of the several factors such as management practices, weather, topography, and soil conditions that can influence cover 

crop areas, we evaluated the impact of weather, mainly precipitation and GDD, on spatial and temporal variability in the 

Maumee River watershed.  

Similar to prior studies, we found fall precipitation to be correlated with percent cover crop areas. Fall precipitation is 

considered to be important for cover crop emergence, mainly to those that are aerially seeded, as increase in soil moisture 

after rainfall helps increase the soil to seed contact required for germination. In a two-year field study, Gaudlip et al (2019) 

observed differences in cover crop emergence and stand establishment through aerial seeding and related those differences 

with fall precipitation 16. Particularly, they observed lower emergence and stand establishment with less fall precipitation in 

2017 and higher success in cover crop establishment in very wet fall of 2018 when seeds were aerially applied. However, 

they found very wet condition unfavorable for cover crops’ emergence when seeds were drilled. The study also found fall 

biomass of cover crops to be correlated well with GDD for both years (R2 = 0.28 in 2017 and 0.82 in 2018) (Gaudlip et al., 

2019). 

Cover crop adoption has been reported to be very less in the Maumee watershed compared to other in previous studies. 

When compared between the two watersheds: Saginaw and Maumee based on several survey reports in 2012, 2014, and 

2016 for farmer adoption of conservation practices, only 26.2% of Maumee farmers reported of using cover crops compared 

to 51% in Saginaw watershed 67. Although most of the farmers had higher perceptions of risks related to water quality, they 

believe that they face barriers to cover crop adoption. The study showed that only 26% of the farmers were enrolled in 

incentive programs including EQIP, CRP, and CSP. This could be one reason we see continuously less area of row crop acres 

in winter cover in the time series except for 2019/20 season. During 2019/20 season more than 50% of the row crop acres 

was however observed to be covered in fall. This seems unusual in the time series trend when we look back to previous 
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years with a sudden spike in the area of cover in fall while the spring cover and fully covered categories consist of only 

small fraction of area.  

The 2019 crop year (from January to August) was one of the wettest in 125 years in the whole contiguous United States 

including the Midwest 68. This led to the delay in crop growing season of 2019 by about 3-4 weeks in the Midwest 68. In 

Ohio, during the second week of May, only 1-4% of the total acres (corn and soybean) were planted with corn and soybean 

compared to 47% (corn) and 20% (soybean) for 2014-2018 on average and 50%(corn) and 28%(soybean) previous year 69. 

The Ohio NRCS even announced a disaster recovery funding to the farmers to plant cover crops on their flooded cropland 

where they were not able plant their regular cash crops 70. This type of program was introduced around the whole Midwest. 

It means that most of the row crop acres had cover crop from the previous growing season. This could be the reason why 

our model detected a large fraction of corn-soybean area in the Maumee River watershed as being classified as fall 

established.  

Although the ground truth data were representative of the cover crops in the fields, our model however does not have 

ability to differentiate between weed and cover crops. If there is a presence of weed, having spectrally similar pattern as the 

healthy growing crops, the model just classifies that as cover crops. This could be potentially other reason that we observe 

larger proportion of fall established covers than the fully established and spring established covers. The probability of cover 

crops/cover crop fields getting weed biomass increases during fall if the length of growing season is longer than the normal 
45.  

The longer growing season means higher growing degree days (GDD) which is one of the important variables/predictors 

explaining the weed biomass in the fall. Baraibar et al. (2018) reported that there exists a correlation between cover crop 

and weed biomass in the fall. While during spring the relation is just opposite as the higher amount of cover crop biomass 

suppresses the growth of weed.  

5. Conclusions 

In this study, we implemented satellite remote sensing and machine learning approach to detect spatial and temporal 

trends of winter covers in the Maumee River watersheds in northwestern Ohio and understand their relationship with weather 

factor. A RF based machine learning model was trained by integrating ground-truth field data with the seasonal satellite 

image composites developed utilizing Landsat 5,7 and 8 captured scenes. The study focused mainly on corn and soybean 

fields, and the information about corn and soybean fields on an annual scale was obtained from USDA cropland data layers. 

The temporal variability of cover crops was analyzed with fall precipitation and GDD to understand the role of weather in 

establishment and growth of cover crops through the season. The model once trained was then used to classify the fields 

into four categories – (1) winter kill, (2) winter hardy, (3) spring emergent, and (4) no cover. Our results show that for most 

part of the study period, more than 40% of the corn-soybean area in the watershed was not covered with winter vegetation. 

Winter cover crop area in the Maumee River watershed has increased by about 40% in 2019/20 season compared to 2008/09 

season. Similarly, the cover crops are found to perform well when the weather is favorable during early establishment as 

well as through the whole season. This study shows that cover cropping practice can be monitored at a landscape scale 

utilizing publicly available images from earth observing satellites. Understanding of cover cropping practices at a landscape 

scale is significant to developing critical public policies for increasing the adoption and improving overall sustainability of 

agricultural production system. 
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