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THE NTH-PLANT SCENARIO FOR BLENDED FEEDSTOCK 1 

CONVERSION AND PREPROCESSING NATIONWIDE: BIOREFINERIES 2 

AND DEPOTS 3 

Highlights 4 
 Nationwide facility database to meet target cost, quality and quantity for biofuels. 5 
 In 2022, 42.8M dt of corn stover and switchgrass could be accessible nationwide 6 
 An $8/dt reduction in delivery cost could reduce total accessible biomass by 67%.  7 
 KS, NE, SD and TX were identified as potential states with a strong biofuel economy 8 
 CO, AL, GA, MN, MS and SC could greatly benefit from a nationwide depot network.  9 

ABSTRACT. The sustainability of the biofuel industry depends on the development of a mature 10 

conversion technology on a national level that can take advantage of the economies of scale: the nth-11 

plant. Defining the future location and supply logistics of conversion plants is imperative to transform 12 

the nation’s renewable biomass resources into cost-competitive, high-performance feedstock for 13 

production of biofuels and bioproducts. With US restrictions on production levels of conventional 14 

biofuels from edible resources, the nation needs to plan for the widespread accessibility and 15 

development of cellulosic biofuel. Conventional feedstock supply systems will be unable to handle 16 

cellulosic biomass nationwide, making it essential to expand the industry with an advanced feedstock 17 

supply system incorporating a distributed network of preprocessing depots and biorefineries. Current 18 

studies are mostly limited to designing supply systems for specific regions of the country. We developed 19 

a national database with potential locations for depots and biorefineries to meet the nation’s target 20 

demand of cellulosic biofuel. Blended feedstock are considered in a Mixed Integer Linear Programming 21 

model to deliver on-spec biomass with a desired quantity and quality at the biorefinery. A total delivered 22 

feedstock cost that is less than $79.07/dt (2016$) is evaluated for years 2022, 2030, and 2040. In 2022, 23 

124 depots and 59 biorefineries could be supplied with 42.8 million dt of corn stover and switchgrass. 24 

In 2030 and 2040, the total accessible biomass could increase to 215% and 393% respectively when 25 

compared to 2022. However, an $8/dt reduction in targeted delivery cost reduces the total accessible 26 

biomass by 67%. Kansas, Nebraska, South Dakota and Texas are potential states with a strong biofuel 27 

economy as they had six or more biorefineries located in all scenarios. Colorado, Alabama, Georgia, 28 
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Minnesota, Mississippi and South Carolina would greatly benefit from a depot network as these could 29 

only deliver to a biorefinery in a nearby state. To elaborate the impact of a nationwide consideration, 30 

the findings were compared with existing literature for different US regions.  31 

Keywords. Corn stover, Switchgrass, Biofuel, Feedstock quality, Biomass supply chain, Mixed-integer 32 

linear programming 33 

INTRODUCTION 34 

Feasibility studies of agricultural residue conversion to biofuels, bioproducts, and/or biopower are 35 

on the rise given biomass’ potential to become the major source of US renewable energy (Langholtz et 36 

al., 2016). The goal is to mitigate the negative impact of climate change and provide energy security. 37 

Currently, the most widely produced biofuel is conventional ethanol (derived from corn starch) which 38 

is an effective substitute for fossil fuel in the transportation industry. The US is one of the largest fuel 39 

ethanol producers in the world with 200 plants that total a national name plate production capacity of 40 

over 16.9 billion gallons (US EIA, 2019), 42% of the global biofuel production share (IEA, 2019). To 41 

restrict competition of food resources and pressure on arable lands, US has limited the production of 42 

conventional biofuels to 15 billion gallons per year (BGY) and set a target of 21 BGY of non-edible 43 

feedstock to boost the total renewable fuel production by 2022, from which at least 16 BGY should be 44 

from cellulosic biofuels (US EPA, 2020). Unlike food-based biomass resources, cellulosic biomass are 45 

non-edible resources including energy crops, municipal solid waste, and agricultural or forest residues 46 

(Kim and Dale, 2015). Due to widespread availability and low-cost raw material, cellulosic biomass is 47 

a promising alternative for starch-based biomass. But, the biofuel production cost is unclear due to the 48 

complex preprocessing operations, transportation and storage conditions (Limayem & Ricke, 2012).  49 

Since the cellulosic biofuel production in the US was unable to meet the predictions for year to date, 50 

EPA reduced the volume required to comply with RFS2 (US EPA, 2020). EPA had previously demanded 51 

10.5 billion gallons of cellulosic biofuel production for year 2020, but had to reduce their targets to 590 52 

million gallons (Bracmort, 2018). This production shortage could be overcome with an efficient supply 53 
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chain. Currently, we rely on a conventional/centralized supply system where feedstock is harvested, 54 

baled and stored close to their provenance and transferred directly to biorefineries. Given the inherent 55 

non-flowable and bulky characteristics of agricultural residues, this system is not efficient in handling 56 

cellulosic resources. Several studies have shown that, this system fails to handle supply regions with 57 

lower yield and larger supply area (Lamers et al., 2015a; Jacobson et al., 2014; Hess et al., 2009a). 58 

Logistic complexities stems partly from their dispersed geographic location, and quality variability. 59 

Therefore, the feedstock logistics for cellulosic biofuel constitutes 35-50% of the production cost, which 60 

constraints the near-term development of a consistent market (Foust et al., 2007).  61 

An advanced feedstock supply system that ensures the delivery of on-spec biomass at the gate of 62 

biorefinery would reduce production costs and accelerate the national biofuel industry (Hess et al., 63 

2009b). The idea is to move biomass-preprocessing operations from the biorefinery closer to the 64 

farmgate and into preprocessing depots. These smaller facilities, when compared to biorefineries, could 65 

be built in the lower yielding regions not accessible by conventional biorefineries (Argo et al., 2013), 66 

depots will help increase the biomass supply region. Depots would receive biomass with heterogeneous 67 

characteristics and provenance from nearby regions for drying, grinding, and densification to a uniform 68 

format feedstock (Hess et al., 2009b). Shipments to biorefineries would be based on a biomass 69 

blend/ratio with specified qualities including ash, moisture and carbohydrate content. Because the focus 70 

has been to design a cellulosic biofuel supply chain that maximizes quantities delivered at a biorefinery, 71 

very few studies have used the concept of biomass blending for on-spec deliveries (Campbell et al., 72 

2013; Shi et al., 2013; Roni et al., 2018; Ekşioğlu et al., 2020; Narani et al., 2019). Blending costs 73 

depend on quality targets for different conversion pathways. Feedstock blend that meets target ash and 74 

carbohydrate content costs 12.12% higher than only meeting the latter (Roni et al., 2018). 75 

Finding the location and size of the depots and biorefineries alongside with identifying the optimum 76 

feedstock blend and logistics cost, can ensure a long-term financial stability of the cellulosic biofuel 77 

production. A cost-competitive and efficient system design requires the integration of the 78 
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interdependencies and complexities of all the different supply chain stages. Some studies in the 79 

literature considered a single feedstock (Kim et al., 2016; Lin et al., 2016) while others considered 80 

multiple feedstock types (Zhu et al., 2011; Marvin et al., 2012). Almost all of the studies have 81 

considered a regional supply area. Gonzales et al. (2017) developed a GIS-based heuristic to identify 82 

depots and biorefineries nationwide to locate stranded and accessible herbaceous biomass. The study 83 

did not consider on-spec delivery within a target cost. Ekşioğlu et al. (2009) identified the location, size 84 

and number of biorefineries as well as average travel distance and transportation costs to produce 85 

cellulosic ethanol from corn stover in Mississippi. Bai et al. (2011) proposed Lagrangian Relaxation 86 

(LR) based heuristics to predict biorefinery locations in Illinois for optimum biorefinery investment, 87 

feedstock and transportation cost. Marvin et al. (2012) developed a mixed-integer linear programming 88 

(MILP) model which can handle five different types of agricultural residues to determine the optimal 89 

location and size of biorefineries for a nine-state region in Midwestern US. Ng et al. (2017) developed 90 

an MILP model with multi-year horizon to minimize total annual cost determining the optimal number, 91 

capacity and location of depots and biorefineries, the production inventory and shipment profiles. Corn 92 

stover and switchgrass was considered to use the model in Southern Wisconsin.  93 

Feedstock cost include, (1) grower payment, (2) logistics cost, and (3) quality costs. Most of the 94 

studies found in literature optimized logistics cost while maximizing supply. Delivering the optimal 95 

feedstock blend to the biorefinery considering both quality and quantity of feedstock, is still in its 96 

infancy in terms of research. Roni et al. (2019) developed an MILP model to optimize feedstock 97 

sourcing decisions and depot locations while considering a least-cost blend formulation for multiple 98 

feedstock (agricultural residues, energy and municipal solid waste). The quality biomass parameters 99 

considered by Roni et al. (2019) were carbohydrate, ash and moisture content to identify the optimum 100 

feedstock blend to feed biorefinery in Kansas. The authors only considered the supply chain for a single 101 

biorefinery while identifying the depot locations. Since cellulosic biomass is costly to handle and 102 

transport, higher production cost puts another limitation to the advancement of this industry alongside 103 
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with the quality constraints. DOE goal is to achieve a near-term $3/GGE by 2022 or a long-term goal 104 

of $2.5/GGE by 2030, where feedstock handling and delivery costs are $71.26/dt and $79.07/dt 105 

respectively at the biorefinery gate (Davis et al., 2013).  106 

The authors identified a knowledge gap in the literature that no other studies consider a nationwide 107 

delivery of on-spec biomass to depots and biorefineries while meeting a target minimum fuel-selling 108 

price of $3/GGE by 2022 and $2.5/GGE by 2030. This study aims to fill in that research gap by 109 

optimizing both the logistics cost and quality costs while handling the complexities of nationwide 110 

delivery under a target biofuel price. The novelty in this study is that we provide an economically and 111 

technically viable industry path to the development of a national biofuel industry by answering some 112 

of the key questions: i) How much biomass can be delivered nationwide under the quality and cost 113 

target? ii) What are the logistics cost required for delivery? iii) What are the optimum locations and 114 

capacities of depots and biorefineries nationwide? iv) What are the possible scenarios for various states 115 

in a depot-based system? To answer these, we developed a modified version of the least-cost 116 

formulation model (Roni et al., 2020). Contributions from this study: (1) Validation that a larger supply 117 

radius and a higher quantity of biomass can be accessed using a distributed system of depots to meet 118 

competitive biofuel prices. (2) Exemplary scenarios with a national mature conversion technology that 119 

takes advantage of economies of scale, the nth-plant scenario. (3) Contribution to the literature with a 120 

public nationwide database of field-depot and depot-biorefinery location and allocation considering 121 

multiple scenarios to meet DOE near- and long-term cost targets.  122 

METHODS 123 

MODEL APPROACH  124 

The mixed-integer linear program (MILP) model was developed using the OPTMODEL procedure 125 

in SAS Institute Inc. 9.4M4 and the brand and cut algorithm was used to solve the model. The MILP 126 

analyzes different biomass feedstock quantities available at various farmgate prices as well as routes 127 

from fields to candidate depot sites where it goes through pretreatment and blending with other types 128 



ASABE Journal Template July 2020   6 

of biomass. Routes from depots to biorefineries are also analyzed to ship a blend of different feedstock 129 

types. Figure 1(a) represents the decision network used to formulate the distributed depot system and 130 

includes different farmgate price levels, feedstock types, field locations, depot locations, and biorefinery 131 

locations. The MILP solves for the maximum amount of biomass feedstock shipped nationwide while 132 

meeting a set of biomass characteristics or quality specifications, cost and capacity constraints. In the 133 

solution, all biorefineries are co-located with a depot to minimize the transportation cost. Depots that 134 

are co-located with biorefineries are in high yielding regions and have a capacity as large as the 135 

biorefinery. Smaller depots help collect biomass from lower yielding regions and ship the preprocessed 136 

feedstock to biorefineries in higher yielding regions. Model inputs included: the resource quantities 137 

presented in the BT16 by Oak Ridge National Laboratory (Langholtz et. al, 2016), the targeted delivery 138 

feedstock cost to the reactor throat presented by the National Renewable Energy Laboratory for 139 

biochemical conversion (Davis et al., 2013), and logistics costs presented by Roni et al., (2018).  140 

MODEL INPUTS 141 

Available biomass 142 
The base-case scenario county-level feedstock values reported in the BT16 for years 2022, 2030 and 143 

2040 at farmgate prices between $30-50 (table 1) were inputs to the model (Langholtz et al., 2016). 144 

Note that the BT16 supply curves are developed by multiple iterations of different price runs and should 145 

be interpreted as either a total of available feedstock x at $30, $40 or $50, and not a cumulative total at 146 

all farmgate prices. For example, in 2022, there is 29.5 Mdt (million dry tons) of corn stover at $40/dt 147 

or 89.9 Mdt of corn stover at $50/dt. We assumed that a biorefinery will accept a feedstock blend of 148 

switchgrass and corn stover. The blend will contribute towards achieving quality specifications at the 149 

biorefinery. Delivering on-spec biomass, includes feedstock with ash content less than or equal to 5% 150 

(dry basis), moisture content equal to 20% and carbohydrate content greater than or equal to 59%  151 

(Davis et al., 2013). A key approach in obtaining the quality requirements of a feedstock is to modify 152 

the harvest operation (Langholtz et al., 2019). Two-pass corn stover has around 4% less ash content and 153 

higher carbohydrate content than three-pass (Shinners et al., 2012). However, the per acre yield of two-154 
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pass is lower compared to three-pass. The decrease in yield is compensated using a corn stover factor 155 

which assumes that two-pass harvest yield is 49% less than three-pass (Langholtz et. al, 2016). Both 156 

corn stover harvesting operations are choices for the model.  157 

Table 1. Nationwide supply curves for corn stover (CS) and switchgrass (SW) 158 
Year Feedstock Available biomass (million dry tons) based on farmgate prices ($/dry tons) 

$30 $40 $50 

2022 CS 0 29.5 89.9 

SW 0 0.12 13.2 

2030 CS 16.7 36.1 116 

SW 0 4.05 59.1 

2040 CS 32.7 44.5 144 
SW 0 27 142 

Field locations  159 
US counties were considered fields in our model. Given that cropland is not equally distributed 160 

through counties, the spatial location of cropland in the 2018 CDL (classified as corn, cotton, rice, 161 

sorghum, soybeans, barley, durum wheat, spring wheat, winter wheat, oats, and fallow/idle) was used 162 

to geo-reference available biomass at each county as an alternative to using county centroids and was 163 

best illustrated in Ashley, AR and Washakie, WY Counties (fig. 1(b)). On average, the difference in 164 

centroids was 0.074° (8.2 km) with the highest change been 0.8° (89 km) in San Miguel County, NM. 165 

 166 

Figure 1. (a) Schematic representation of the decision network analyzed where CS2P is two-pass corn stover, CS3P 167 
is three-pass corn stover, and SW is switchgrass. (b) Cropland centroids vs county centroids. 168 

Logistic costs 169 
Table 2 presents the logistics costs used in this study based on Roni et al. (2018). The fixed 170 

transportation cost for bales is almost four times higher than the cost for pellets. Storage for bales is 171 

almost 11 times greater than that of pellets. The ash dockage and moisture dockage cost were considered 172 

when the feedstock failed to meet the ash and moisture specifications. 173 
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Table 2. Costs for Advanced Supply Chain (2016$) 174 

Cost Description Feedstock Format Location 
Feedstock 

CS3P CS2P SW 

Farmgate Price Bale Field $30-50[a] $30-50[a] 

Storage Bale Field $3.97 $4.10 $3.02 

Storage, Handling and Queuing Bale to pellets Depot $2.09 $2.22 
Storage, Handling and Queuing Pellets Biorefinery $0.34 $0.65 

Processing Cost Bale to pellets Depot $19.47 $18.77 

Ash Dockage Pellets Biorefinery $2.71 $0.98 $0.53 
Moisture Dockage Pellets Biorefinery $0.03 $0.03 $0.03 

Transportation Fixed Cost or Field-side 

Handling and Queuing 
Bale Field to Depot $3.42 

Transportation Variable Cost[b] Bale Field to Depot $0.114 

Transportation Fixed Cost Pellets Depot to Biorefinery $0.829 $0.792 

Transportation Variable Cost[b] Pellets Depot to Biorefinery $0.082 $0.081 
[a] 2014$, [b] *$/mile. CS3P= Corn stover 3-pass, CS2P= Corn stover 2-pass, and SW= Switchgrass. 175 

Candidate depot and biorefinery locations 176 
Given the computational complexities of an uncapacitated facility location problem with a 177 

nationwide scope (2,082 possible locations for depots and biorefineries); we reduced the problem size 178 

to solve for optimality and used a two-step process. To find a subset of candidate locations, we solved 179 

to maximize corn stover (three-pass only) and switchgrass delivered at $79.07 /dt to depots using the 180 

biomass supply curve for year 2040 in the BT16 and relaxed the quality constraints. This initial solution 181 

found a total of 98.6 Mdt delivered to 247 depots, which were used as candidate locations for depots 182 

and/or biorefineries in the MILP model presented in this paper.  183 

MODEL FORMULATION  184 

The MILP model presented in this paper identifies the optimal location and size of an undetermined 185 

number of biorefineries and depots to maximize total feedstock delivered to biorefineries at less than 186 

or equal to a specific target price (eq. 1). We analyzed two target prices: $79.07 and $71.26 per dt 187 

($2016) based on the short- and long-term goals presented by a DOE techno-economic analysis (Davis 188 

et al., 2013). Table 3 presents the data sets, parameters, and decision variables in our MILP formulation. 189 

max ∑ ∑ ∑ 𝑥𝑗𝑘𝑓

𝑓∈𝐹𝑘∈𝐾𝑗∈𝐽

(1) 190 

Table 3. Data sets, parameters, and decision variables 191 
Data sets 

F Set of feedstock types 𝛼𝑓 Set of ash content per ton for feedstock f 

P Set of feedstock prices 𝜇𝑓 Set of moisture content per ton for feedstock f 

I Set of field locations 𝛽𝑓 Set of carbohydrate content per ton for feedstock f 

J Set of potential depot locations 𝑎𝑖𝑓𝑝 
Set of available supply for field i of feedstock type f at 

price p 
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K Set of potential biorefinery locations 𝑚𝑖𝑓 Set of minimum supply for field i of feedstock type f 

𝑑𝑖𝑗 Set of distances between location i and location j 𝑑𝑗𝑘 Set of distances between location j to location k 

𝑉𝐶𝑖𝑗𝑘𝑓𝑝 
Set of total variable cost from field i to depot j: farmgate price (gr), 

storage (sb, sp), transportation (trb, trf), handling and queuing (qh), 

preprocessing costs (pr) , ash dockage (ad) and moisture dockage (md) 

  

Parameters 

T Cost target at delivery                                              H Target carbohydrate content at biorefinery 

U Required depot utilization factor (90%) D Demand of a biorefinery 
M Minimum moisture content at biorefinery S Constant multiplier for depot capacity 

A Maximum ash content at biorefinery   

Decision Variables 

𝐶𝑗 Factor for depot capacity at location j (integer) 𝑍𝑖𝑓𝑝  
1 if feedstock f is purchased at price p from location i; 0 

otherwise (binary) 

𝑋𝑖𝑓𝑝 Amount of feedstock f purchased at price p from location i  (integer) 𝐿𝑗  1 if depot is built in location j; 0 otherwise (binary) 

𝑋𝑖𝑗𝑓 Amount of feedstock f shipped from location i to location j  (integer) 𝐿𝑘  
1 if biorefinery is built in location k; 0 otherwise 

(binary) 

𝑋𝑗𝑘𝑓 Amount of feedstock f shipped from location j to location k  (integer) 

 192 

Demand at each biorefinery was constant at 725,000 dt/year (D). Depot capacities were determined 193 

by the model using the product of a constant multiplier 25,000 (S) and an integer decision variable (𝐶𝑗). 194 

Depot construction costs presented by Roni et al. (2019) fitted a linear equation with an adjusted R-195 

square of 0.998. Equation 2 represents depot fixed costs (FC). Variable costs (VC) to deliver biomass 196 

included farmgate price, storage, handling, transportation and preprocessing costs (eq. 3). When needed, 197 

a cost to reduce ash or increase moisture was incurred at the biorefinery to meet quality specifications. 198 

Constraints in table 4: (1) ensures that each feedstock is purchased only at a single price from each field 199 

location. (2) Puts a maximum limit to the amount of feedstock purchased from a field location so that 200 

it does not exceed the total amount available at that field. (3) Ensures that the total amount of corn 201 

stover harvested from a location using three-pass and two-pass is not more than the available corn stover 202 

in that field. (4) Decides on the capacity of the depot depending on the total supply to that depot. (5) Is 203 

the flow balance between field and depot. (6) Sets a minimum utilization to the depot capacity. (7) Is 204 

the flow balance between depot and biorefinery. (8) Ensures that the total supply to a biorefinery meets 205 

the required demand. (9) Requires that the total carbohydrate content of all the different feedstocks 206 

supplied to a biorefinery meet the minimum carbohydrate requirement. The cost target is bounded using 207 

constraint (10) combining the total fixed as well as variable costs. The constraints in (11) ensures non-208 

negativity of the integer decision variables. Constraints in (12) are for binary decision variables. 209 

𝐹𝐶 = ∑(132,717 ∗ 𝐿𝑗 + 2.297 ∗ (𝑆 ∗ 𝐶𝑗))

𝑗∈𝐽

(2) 210 
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𝑉𝐶𝑖𝑗𝑘𝑓𝑝 =  ∑ ∑ ∑(0.997 ∗ 𝑔𝑟𝑝 ∗ 𝑋𝑖𝑓𝑝)

𝑝∈𝑃𝑓∈𝐹𝑖∈𝐼

+ ∑ ∑ ∑(𝑠𝑏𝑓 + 𝑞ℎ𝑓 + 𝑝𝑟𝑓 + 𝑡𝑟𝑏𝑖𝑗𝑓 + 𝑠𝑝𝑓) ∗ 𝑋𝑖𝑗𝑓

𝑗∈𝐽𝑓∈𝐹𝑖∈𝐼

+

 ∑ ∑ ∑(𝑡𝑟𝑝𝑗𝑘𝑓 + (𝛼𝑓 − 𝐴) ∗ 𝑎𝑑𝑓 + (𝑀 − 𝜇𝑓) ∗ 𝑚𝑑𝑓) ∗ 𝑋𝑗𝑘𝑓

𝑓∈𝐹𝑘∈𝐾𝑗∈𝐽

(3)
 211 

Table 4. Model Constraints 212 
No. Constraint Name Mathematical Formulation 

1 Feedstock purchase  
∑ 𝑍𝑖𝑓𝑝

𝑝∈𝑃

≤ {
0 𝑖𝑓 𝑚𝑖𝑓 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            ;  ∀ 𝑖 𝑖𝑛 𝐼, 𝑓 𝑖𝑛 𝐹 

2 Maximum supply  𝑋𝑖𝑓𝑝 ≤  𝑎𝑖𝑓𝑝 ∗ 𝑍𝑖𝑓𝑝                   ;  ∀ 𝑖 𝑖𝑛 𝐼, 𝑓 𝑖𝑛 𝐹, 𝑝 𝑖𝑛 𝑃 

3 Three pass & Two pass 𝑋𝑖,𝑓=𝐶𝑆3𝑃,𝑝 + (𝑋𝑖,𝑓=𝐶𝑆2𝑃,𝑝 𝐶𝑆 𝐹𝑎𝑐𝑡𝑜𝑟⁄ ) ≤ 𝑎𝑖,𝑓=𝐶𝑆3𝑃,𝑝  ; ∀ 𝑖 𝑖𝑛 𝐼, 𝑓 𝑖𝑛 𝐹, 𝑝 𝑖𝑛 𝑃 

4 Depot Capacity ∑ ∑ 𝑋𝑖𝑗𝑓 ≤ 𝑆 ∗ 𝐶𝑗       ;

𝑓∈𝐹𝑖∈𝐼

∀  𝑗 𝑖𝑛 𝐽 

5 Flow balance for field-depot ∑ 𝑋𝑖𝑓𝑝

𝑝∈𝑃

= ∑ 𝑋𝑖𝑗𝑓

𝑗∈𝐽

     𝑖𝑓 𝑑𝑖𝑗 < 80  ; ∀ 𝑖 𝑖𝑛 𝐼, 𝑓 𝑖𝑛 𝐹 

6 Depot Utilization ∑ ∑ 𝑋𝑖𝑗𝑓 ≥ 𝑈 ∗ 𝑆 ∗ 𝐶𝑗      𝑖𝑓 𝑑𝑖𝑗 < 80    ;

𝑓∈𝐹𝑖∈𝐼

∀  𝑗 𝑖𝑛 𝐽 

7 Flow balance for depot-biorefinery ∑ 𝑋𝑖𝑗𝑓

𝑖∈𝐼

= ∑ 𝑋𝑗𝑘𝑓

𝑘∈𝐾

  𝑖𝑓 𝑑𝑗𝑘 < 400; ∀ 𝑗 𝑖𝑛 𝐽, 𝑓 𝑖𝑛 𝐹 

8 Biorefinery Demand ∑ ∑ 𝑋𝑗𝑘𝑓 = 𝐷 ∗ 𝐿𝑘

𝑓∈𝐹𝑗∈𝐽

                 ;  ∀ 𝑘 𝑖𝑛 𝐾 

9 Carbohydrate quality constraint ∑ ∑ 𝑋𝑗𝑘𝑓 ∗ 𝛽𝑓 ≥ 𝐻 ∗ ∑ ∑ 𝑋𝑗𝑘𝑓

𝑓∈𝐹𝑗∈𝐽𝑓∈𝐹𝑗∈𝐽

                 ;  ∀ 𝑘 𝑖𝑛 𝐾 

10 Cost target 𝐹𝐶𝑗 + 𝑉𝐶𝑖𝑗𝑘𝑓𝑝 ≤ 𝑇 ∗  𝑋𝑗𝑘𝑓   

11 Integer constraints  𝑋𝑖𝑓𝑝 > 0, ∀ 𝑖 ∈ 𝐼,  𝑓 ∈ 𝐹, 𝑝 ∈ 𝑃;             𝑋𝑖𝑗𝑓  > 0, ∀ 𝑖 ∈ 𝐼,  𝑗 ∈ 𝐽,  𝑓 ∈ 𝐹  

𝑋𝑗𝑘𝑓 > 0, ∀ 𝑗 ∈ 𝐽,  𝑘 ∈ 𝐾,  𝑓 ∈ 𝐹;             𝐶𝑗    > 0, ∀ 𝑗 ∈ 𝐽    

12 Binary constraints 𝑍𝑖𝑓𝑝 ∈ {0,1},         ∀ 𝑖 ∈ 𝐼,  𝑓 ∈ 𝐹,  𝑝 ∈ 𝑃 

𝐿𝑗      ∈ {0,1},          ∀  𝑗 ∈ 𝐽 

𝐿𝑘    ∈ {0,1},          ∀ 𝑘 ∈ 𝐾 

RESULTS  213 

SCENARIOS 214 

Four different scenario runs were performed considering the year and cost target, namely (S1) 2022 215 

at $79.07/dt, (S2) 2030 at $79.07/dt, (S3) 2040 at $79.07/dt and (S4) 2030 at $71.26/dt. Even after 216 

decreasing the set of depot and biorefinery candidates, the problem had around 43,000 variables, 5,500 217 

constraints and 16,000 constraint coefficients. We ran each scenario for 3 hours and obtained an error 218 

gap between 12-13%. The results for the different years and targeted prices analyzed in this study are 219 

presented in table 5. When targets for delivery to the reactor throat are at $79.07/dt, the total viable 220 

biomass collected has above a two-fold increase (215%) from 2022 to 2030 and almost a four-fold 221 

increase (393%) from 2022 to 2040. The increase in total collected biomass could be explained by the 222 



ASABE Journal Template July 2020   11 

increase in biomass availability and inherent higher geographical concentration within regions, making 223 

it cost efficient to collect more biomass within the same cost target. While we see a significant increase 224 

in potential biomass delivered to biorefineries with respect to time, DOE has lower long-term cost 225 

targets for 2030 ($71.26/dt). Based on our analysis, a lower delivering cost target would decrease the 226 

total available biomass in 2030 by 68% and 69% when comparing years 2030 and 2022 respectively.  227 

Table 5. Analyzed scenarios 228 

 Scenario Feedstock 
Million dry tons / year  

 Number of Facilities 
Summary Statistics for 
Biorefinery costs ($) 

$30 $40 $50 Total 

S1: 2022   

$79.07/dt 

SW[a] 0 0.01 5.31 5.32   

124 Depots 

59 Biorefineries 

42.8 Mdt Collected 

 

 

Min: $71.36 

Max: $87.91 

Standard dev.: 3.92 

Standard error: 0.51 

CS2P[b] 0 7.83 17.6 25.5  

CS3P[c] 0 9.14 2.85 12.0  

S2: 2030 
$79.07/dt 

SW[a] 0 3 35.4 38.4   

204 Depots 

127 Biorefineries 
92.1 Mdt Collected 

 

Min: $63.61 

Max: $87.76 
Standard dev.: 5.31 

Standard error: 0.47 

CS2P[b] 2.16 9.21 21.8 33.2  

CS3P[c] 10.3 4.18 6 20.5  

S3: 2040 
$79.07/dt 

SW[a] 0 17.8 60.6 78.4   

304 Depots 

231 Biorefineries 
168 Mdt Collected 

Min: $63.64 

Max: $101.72 
Standard dev.: 6.13 

Standard error: 0.403 

CS2P[b] 2.54 13.4 30.9 46.9  

CS3P[c] 24.1 4.22 13.9 42.2  

S4: 2030 

$71.26/dt 

SW[a] 0 2.11 4.68 6.79   

80 Depots 

41 Biorefineries 
29.7 Mdt Collected 

 

  Min: $63.44 

  Max: $80.59 
  Standard dev.: 4.62 

  Standard error: 0.722 

 

CS2P[b] 3.5 9.05 0.79 13.3  

CS3P[c] 7.41 2.13 0.05 9.59 

[a] SW = Switchgrass, [b] CS2P = Corn stover two-pass, [c] CS3P = Corn stover three-pass. 229 

SUMMARY STATISTICS 230 

To further reduce our problem complexity, the cost constraint at the reactor throat was applied as an 231 

average for a nationwide system. As a result, the solution located biorefineries with less than or equal 232 

to and greater than the target delivery cost. However, for an ideal scenario, all biorefineries would meet 233 

the cost target. To observe the deviation from the cost target, the average cost for each individual 234 

biorefinery was calculated. The highest deviation from the mean was observed in S4, with an average 235 

cost of 95% of the biorefineries within +/- $1.44 (=2*0.722) of the cost target $71.26 /dt. This is due to 236 

the limited supply of the scenario which makes it complex to build biorefineries at that lower cost target. 237 

For all the other scenarios, the deviation was within +/- $1. Figure 2(a) identifies minimum, maximum, 238 

standard deviation, and standard error of the mean for all scenarios. 46, 39, 48 and 54% of all the 239 
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biorefineries were within the cost target for scenarios S1-S4 respectively.  240 

BIOMASS ACCESSIBILITY 241 

The BT16 data predicted that the availability of herbaceous biomass supply within the US would be 242 

enough to develop a sustainable biofuel economy. However, availability does not guarantee 243 

accessibility of those biomass resources. Resources would be accessible only if they could be collected 244 

and shipped to the gate of the biorefinery within a feasible cost. In figure 2(b) we identified the total 245 

percentage of stranded and accessible biomass based on the BT16 supply curve at the $50 farmgate 246 

price the total feedstock collected by the developed model in this study. A large portion of the feedstock 247 

remained stranded or inaccessible when compared to the BT16 supply curve [fig. 2(b)]. Using costs for 248 

the short- and long-term targets respectively, 45-60% and 20% of the available biomass was accessible 249 

biomass with an advanced supply system. Hence, the goal of $71.26/dt or $2.5/GGE by 2030 might 250 

only be achieved for 30 Mdt or 1.3 billion GGE (at 44.8 GGE/dt -Davis et al., 2013).  251 

FEEDSTOCK RATIO 252 

Figure 2(c) illustrates the estimated proportions of total feedstock type collected to maintain the on-253 

spec delivery. When the delivered target price is fixed, almost 50% of the total collected biomass is254 

 255 

Figure 2 (a) Distribution of the average biorefinery costs for the four scenarios. (b) Comparison of total available and 256 
collected feedstock by the model and (c) percentage of feedstock collection for scenarios S1, S2, S3 and S4. 257 

 estimated to be switchgrass in the later years (S2 and S3). From the scenarios presented, corn stover 258 

two-pass represented the majority of the selected feedstock in the earliest year and at the lowest price  259 

(S1 and S4). In S1 the model was restricted by the input supply curve of year 2022. Whereas in S4, the 260 
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model had to satisfy a lower cost target of $71.26/dt. This resulted in the collection of biomass mostly 261 

from the Corn Belt region. For the other two scenarios (S2 and S3), the input supply curve from BT16 262 

at 2030 and 2040 was high enough to expand the selected regions by the model outside of the Corn Belt 263 

and collect a higher percentage of switchgrass. 264 

DEPOT AND BIOREFINERY LOCATIONS 265 

Figure 3 is an illustration of our nationwide analysis for depot and biorefinery locations. The supply 266 

curve, represented in shades of green, was estimated using the average supply of corn stover and 267 

switchgrass at $30, $40 and $50. Counties with an overlapping triangle and circle represent depots co-268 

located with biorefineries. Moreover, the biorefineries that were within the cost target are mostly 269 

situated in the Corn Belt region and in part of Texas due to the higher biomass supply in those regions.  270 

 271 

Figure 3. Depot and biorefinery locations in the US for four scenarios: (S1) 2022 @ $79.07/dt, (S2) 2030 @ $79.07/dt, 272 
(S3) 2040 @ $79.07/dt and (S4) 2030 @ $71.26/dt.  273 

DEPOT AND BIOREFINERY CAPACITY 274 

The different capacities of depots built for all scenarios were also analyzed to estimate the scenario for 275 
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a conventional supply chain. Locations with a depot size of 725,000 dt could be identified as ideal  for 276 

a conventional supply chain. For example, in S1, 13 biorefineries could be built with a conventional 277 

supply chain collecting 9.5 Mdt. Including depot locations allows for an increase of 42.8 Mdt collected 278 

biomass. The two most common depot sizes selected by the model are 725,000 and 25,000 dt/year. The 279 

biggest depot size reflects a co- location of a biorefinery and a depot minimizing delivery costs from 280 

depots to biorefineries. Interestingly, 114 depots of 625,000-700,000 dt/year were located across all the 281 

scenarios studied and only 89 depots of sizes 50,000-125,000.  282 

STATEWIDE CAPACITY 283 

Identifying the potential states with high number of depots and biorefineries could benefit the 284 

economies of scale of the supply chain system for those local regions (fig. 4).  285 

 286 

Figure 4. Number of depots and biorefineries in each state for the four scenarios, (S1) 2022 at $79.07/dt, (S2) 2030 at 287 
$79.07/dt, (S3) 2040 at $79.07/dt and (S4) 2030 at $71.26/dt. The bubble size indicates the total amount of feedstock 288 
shipped to depots for each state. Each of the biorefineries have fixed demand of 725,000 dt/year.  289 

KS, NE, SD and TX were identified as potential states with a strong biofuel economy with six or 290 

more biorefineries located in all scenarios. NE was the only state with more than 10 biorefineries for 291 
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both, S1 and S4 suggesting that it can be a potential biofuel production base for both, the short-term and 292 

long-term scenario. A few states had a very high number of biorefineries (>10): NE (S1, S2, S3, S4), 293 

KS (S2, S3), TX (S2, S3), SD (S2, S3) and Ok (S2, S3).  Some states had multiple depots but zero 294 

biorefineries such as CO (S1, S4), AL (S2), GA (S4), MN (S4), MS (S4) and SC (S4). Those states 295 

would need to ship the preprocessed biomass to a nearby out-of-state biorefinery. The number of such 296 

cases increased with lower cost target introducing logistical complexities of longer haul.  297 

DISCUSSION 298 

The goal was to analyze the nationwide scenario for cellulosic biofuel production and determine the 299 

feasibility of the EPA’s target of 16 billion gallons by year 2022. Considering a biofuel yield of 44.8 300 

GGE/dt (Davis et al. 2013), around 357 Mdt of feedstock needs to be delivered at the gate of the 301 

biorefinery and a total of 493 biorefineries with 725,000 dt capacity each has to be built to meet EPA 302 

goals. However, the results of the developed model indicated that only 42.8 Mdt of corn stover and 303 

switchgrass could be delivered to a total of 59 biorefineries by year 2022 which is 12% of the total 304 

cellulosic feedstock demand. The remaining 88% would come from other cellulosic resources including 305 

miscanthus and wheat straw. But, given that corn stover and switchgrass comprise around 70% of the 306 

total herbaceous supply (Langholtz et al., 2016), herbaceous biomass alone is not a feasible option. 307 

Even when the supply curve of 2030 and 2040 from the BT16 was considered, the model predicted the 308 

delivery of 26% and 47% of the EPA’s cellulosic feedstock demand respectively.  309 

A nationwide analysis helps identify an nth-plant scenario for biofuels, regardless of political 310 

boundaries, given that some states in the US may ship preprocessed biomass to the biorefinery of a 311 

nearby state. Optimizing part of the nation would have made the model computationally more efficient 312 

but it would introduce error in terms of boundary scenarios. The only previous work found in literature 313 

for a nationwide scenario was by Gonzales et al. (2017). However, Gonzales et al. (2017) did not 314 

consider on-spec delivery with quality nor specific constraints on the cost target. The study presented 315 

that 183.7 Mdt of herbaceous biomass could be collected out of the predicted 205 Mdt in year 2022 and 316 
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predicted to meet more than the targeted demand of EPA for year 2022. Our analysis suggested that the 317 

EPA’s target was highly over estimated if feedstock quality and biofuel price target were considered.  318 

Roni et al. (2018) considered delivery to a single fixed biorefinery location in Seridan County of KS 319 

and solved to find depot locations and sizes for the least-cost feedstock blend. Four depots were 320 

identified in NE, KS and CO to supply a total of 725,600 dt to one biorefinery. In the same region, we 321 

identified 37 depots and 20 biorefineries in NE, KS and CO to supply a total of 14.5 Mdt [fig. 5(a)]. 322 

This difference may stem from solving for biorefineries and depots simultaneously and is reflected in a 323 

20-fold increase of collected biomass when compared to Roni et al. (2018). In both cases, supply curves 324 

from the BT16 for 2022 were used.  325 

Caffrey et al. (2015) used a simplified heuristic to analyze the biomass supply chain management in 326 

North Carolina using Switchgrass and Sorghum with different harvest methods (e.g. forage and bales). 327 

The storage location and biorefineries were determined using a conventional supply system. The authors 328 

suggested that a biorefinery in the Coastal Plain region of NC would be beneficiary due to the higher 329 

availability and productivity of agricultural feedstock in the region. The model results from the 330 

presented study also suggested one biorefinery in NC close to the coastal region. Although, for year 331 

2022, the available feedstock was not enough to meet the target cost of 79.07 $/dt. Hence, the costal 332 

biorefinery in NC was built only for the 2030 and 2040 scenarios [fig. 5(b)]. 333 

 334 

Figure 5. Magnifying on the location of depots and biorefineries in different states. Connecting lines indicate what 335 
fields are assigned to a depot (red circle) in the solution.  336 
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To overcome error gaps and model limitations, our future research will focus on running the model 337 

on a super computer including all the field locations as potential depot and biorefinery candidates. The 338 

model results were highly dependent on the cost parameters and the BT16 supply curve. A detailed 339 

sensitivity analysis on the model parameters will also be included in our future work. Additionally, a 340 

winding factor of 1.2 was included in the model for estimating the road distance. However, the existing 341 

road network could be incorporated in the model to get real distances for an improved better estimate 342 

on the transportation and overall logistics cost. The authors plan is to modify the model presented to 343 

analyze supply chains for additional and/or complementary  biomass types such as miscanthus, short 344 

rotation woody crops, and animal manure for conversion to fertilizers. Illustrating the versatility of the 345 

developed model can be a valuable future aspect of this study. 346 

CONCLUSION 347 

To provide economic sustainability for cellulosic crop production, the location of cellulosic based 348 

biomass depots and biorefineries have to be strategic throughout the US, creating sufficient cellulosic 349 

biomass demand in the market and reducing the pressure on food production. Findings from this study 350 

could be used to provide cost and profit analysis of cellulosic biofuel production to decision-makers 351 

including supply managers, farmers and business investors and ensure a sustainable biofuel economy. 352 

Both strong policy formulation and innovative conversion technology are required to meet EPA’s 353 

cellulosic biofuel production mandate. The results of this study pose a question whether the currently 354 

set mandates are achievable and if they should be updated to a more realistic scenario.  355 
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