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Highlights 9 
• Algorithms were developed for apple flower bud detection using deep neural network. 10 

• Bud detection performances were compared with YOLOv4, YOLOv5, and YOLOv7 models. 11 

• Models were also tested with two datasets and two labeling methods to improve the generalizability of models. 12 

• Results showed the YOLOv4 model outperformed the YOLOv5 and YOLOv7 models on bud detection accuracy. 13 

Abstract. Crop load management practices such as mechanical pruning (hedging), chemical thinning, 14 

and mechanical thinning are mostly followed methods for apple crop load management due to their 15 

effectiveness in both cost and efficiency. However, these methods are non-selective and can lead to 16 

unpredictable fruit numbers per tree, or even damage leaf tissue. Nevertheless, achieving accurate and 17 

optimal target fruit numbers per tree is a challenging task. Robotic bud thinning is an alternative 18 

technique of crop load management that regulates fruit bud density in the tree canopy. Real-time flower 19 

bud detection in the natural environment is a key step for developing this robotic system to 20 

automatically remove flower buds. This study proposed a real-time bud detection model using the You 21 

Only Look Once (YOLO) v4 deep learning algorithm. The detection performance of YOLOv4 model 22 

was compared with those of YOLOv5 and YOLOv7 models. The results showed that under the same 23 

conditions, YOLOv4 performance better than YOLOv5 and YOLOv7 for buds’ detection. The mean 24 

average precision (mAPs) of bud detection with YOLOv4 were 98.99% on dataset-1 (stereo image 25 

dataset) and 94.07% on dataset-2 (mobile images), which were 31.11% and 35.78% higher on dataset-26 

1, and 19.07% and 28.86% higher on dataset-2 than the YOLOv5 and YOLOv7 algorithms, 27 

respectively for one class. The YOLOv4 results with one class (bud) showed a mean average precision 28 

(mAP) of 98.90%, F1 score of 96.00%, Recall of 98.00%, and precision of 93.00%.  While the 29 

corresponding values for three classes (silver tip, green tip, tight cluster) are 84.70%, 82.00%, 86.00%, 30 

and 77.00% respectively. The proposed method shows great potential for the real-time rapid detection 31 

of the apple bud location and its growth stages in complex orchard scenarios. This model could lay the 32 

foundation for the machine vision unit of the robotic apple flower bud thinning system. 33 



Keywords. computer vision, YOLO, robotic bud thinning, LED-Stereo Vision image acquisition. 34 

INTRODUCTION 35 

Presently, pruning and thinning (chemical, mechanical, and hand thinning) techniques are mostly 36 

used for crop load management.  However, achieving accurate target fruit numbers per tree is still 37 

a challenging task. Pruning has a risk of low-temperature injury and cannot optimize fruit density, 38 

chemical thinning results in unpredictable fruit numbers per tree. mechanical thinning reduces 39 

more flower, damage to leaf tissue and tree, lack of selectivity, and the risk of spreading disease, 40 

and hand thinning is expensive and laborious job.  41 

An alternative technique of crop load management is artificial spur extinction (ASE) also referred 42 

to as bud extinction or bud thinning, which includes manipulation of fruit bud density in the tree 43 

canopy. Bud thinning primarily focuses on reducing the total number of floral buds of fruiting 44 

branches to optimal levels. The main purpose of bud thinning is to manage tree canopy, improve 45 

fruit quality, and tree health, maximize yield, and regularity of production and manage biennial 46 

bearing and good economic return. Bud thinning at an early stage can redistribute the fruit buds 47 

over the tree to manage the crop load. Bud thinning removes buds just after bud break that can 48 

reserve resources and effectively regulate the nutrient supply in a tree to support the healthy initial 49 

growth of retained floral buds (Tabing et al., 2016). 50 

Manual bud thinning can be labor-intensive, and automatic or robotic bud thinning is one of the 51 

alternative solutions. It is a selective crop load management technique in which an end-effector 52 

accurately removes the selected bud with the help of a cutting blade and scissors. In the robotic 53 

thinning systems, the vision system plays the role of eye as human eye to detect and localize bud. 54 

A fast, efficient, and robust vision system with real-time bud detection at different growth stages 55 

under natural orchard environments is the great significance for automation in robotic bud 56 



thinning. In recent years, researchers have tried deep learning methods based on convolutional 57 

neural networks (CNN) to effectively promoted recognition and positioning of fruit/vegetables for 58 

fruit/ vegetable harvesting robots and pruning robots, mainly because CNN has the potential to 59 

learn shallow and deep features of objects autonomously. To address the challenges of crop load 60 

management, several studies have been focused on using computer vision and 3D reconstruct 61 

technology towards branch detection and localization such as branch identification of tall spindle 62 

apple trees for robotic pruning (Adhikari & Karkee, 2011).  63 

Researchers have employed deep learning in many agriculture applications (Kamilaris & 64 

Prenafeta-Boldú, 2018), such as apple flowers detection (Dias et al., 2018; Tian et al., 2019; Wu 65 

et al., 2020), apple fruitlet detection before fruit thinning (Wang & He, 2021), apple fruits detection 66 

and counting (Koirala et al., 2019; Vasconez et al., 2020), real-time kiwifruit flower and bud 67 

detection for robotic pollination (Li et al., 2022), real-time apple detection for picking robot (Yan 68 

et al., 2021), apple branches identification (Majeed et al., 2018; Zhang et al., 2018). Additionally, 69 

3D skeletons of apple trees used the 3D camera for the identification of pruning branches (Karkee 70 

et al., 2014), and apple bud classification (Xia et al., 2021).  71 

With the rapid development of deep learning-based methods to detect objects with excellent 72 

performance, it has a powerful feature extraction ability to extract features from densely distributed 73 

target objects and the robustness of CNN makes it possible to recognize under complex 74 

environments such as an orchard (Li et al., 2022; Wu et al., 2020). The deep learning method has 75 

two-stage and one-stage detection methods, Fast R-CNN (Girshick et al., 2014), Faster R-CNN  76 

(Ren et al., 2015), and Mask RCNN come in the category of two-stage detection. Gao et al. (2020) 77 

applied Faster-RCNN with the VGG16 network for multi-class apple detection in the SNAP apple 78 

tree system. the overall mAP of the four classes was 0.879.  Yu et al. (2019) proposed Mask R-79 



CNN to overcome the problems of poor universality and robustness of strawberry detection and 80 

categories (ripe or unripe fruit) in a non-structural environment. Compared to two-stage detection 81 

networks (Fast RCNN, Faster RCNN, Mask RCNN), one-stage detection network (YOLO, SSD) 82 

has higher detection accuracy and faster detection speed (Gao et al., 2020; Li et al., 2022; Li et al., 83 

2021; Wu et al., 2020). YOLO is a unified model that uses an end-to-end neural network to detect 84 

and classify objects all at once, which provides fast and accurate object detection in real-time. 85 

Li et al. (2022) applied YOLOv4 and YOLOv3 for kiwi flower and bud detection simultaneously 86 

and found that YOLOv4 achieve a better result in real-time kiwifruit flower and bud detection 87 

simultaneously. Wang & He (2021) proposed a fine-tuned YOLOv5s method for rapid and 88 

accurate detection of apple fruitlet using transfer learning with 8 ms per image as the detection 89 

time. Wu et al. (2020) proposed a channel-pruned YOLO v4 deep learning algorithm to achieve 90 

fast and accurate real-time apple flower detection with compressed model size. the model achieved 91 

97.31% of mAP and 72.33 f/s detection speed. Wang et al. (2022) used the YOLOv4 network with 92 

the MobileNetV3 lightweight network for dense plums detection in a real and complex orchard 93 

environment.   94 

Researchers were focused only on flower detection, and no study has been focused on apple flower 95 

bud detection at a very early stage. The challenges for apple bud detection can attribute to their 96 

tiny shape, varying sizes, appearance, similar color to branches, and complex orchard environment, 97 

which all made identification of the bud substantially difficult. To address these challenges, an 98 

effective deep learning network is required to be capable of detect these tiny buds in a complex 99 

environment with fast and accurate detection. 100 

YOLO is a unified model that uses an end-to-end neural network to detect and classify objects all 101 

at once. In this study, state-of-the-art YOLOv4 and YOLOv5 were both employed for real-time 102 



bud detection at different growth stages. The YOLOv4 bud detection model was fine-tuned to 103 

improve the accuracy and detection speed. The specific objectives of this study were: 104 

1) Employ the YOLOv4, YOLOv5, and YOLOv7 models to detect tiny buds from apple trees 105 

in orchard environment. 106 

2) Compare the performance of three tested models on two different datasets (stereo-vision 107 

images dataset and mobile images dataset) and two labeling methods (one class and three 108 

classes). 109 

MATERIALS AND METHODS 110 

 Image data acquisition 111 

In this study, image acquisition was conducted using two different imaging methodologies, stereo 112 

vision camera and a mobile phone. The image data was collected from Penn State Fruit Research 113 

Extension Center, Pennsylvania, USA, from March 3 to April 3, 2022. The stereo vision image 114 

acquisition system includes two FLIR Blackfly S cameras (model BFS-U3-88S6C-C), mounted in 115 

a stereo configuration with a resolution of 4096*2160 pixels. This system saved images in Portable 116 

Network Graphics (PNG) format. The 12 Cree LEDs were attached to an active flash system for 117 

artificial illumination to capture images at constant illumination and subside the motion blur effect. 118 

To obtain distortion-free and intrinsic parameters camera images, both cameras were calibrated 119 

before capturing the images  (Mirbod et al., 2020). The whole LED stereo vision image acquisition 120 

system was set up in a cart, and the cart was dragged between two rows at 1 m/s speed to collect 121 

the images at 3 Hz. The distance between the camera and the tree was 1 m during image 122 

acquisition. The dataset was collected at three bud growth stages, including silver tip, green tip, 123 

and tight cluster (Figure 1).  124 



 125 

Figure 1. Different growth stages of apple bud after dormant 126 

 127 

Figure 2. Data collection and image preprocessing 128 

Table 1. Outlines the datasets acquired at all three bud growth stages from both (stereo and 129 

mobile) imaging methodologies. 130 

Datasets  Growth stages Total 
 

 Silver tip Green   tip Tight cluster 
 

Stereo vision  820 960 882 2662 

Mobile phone  250 380 220 850 



 Data construction 131 

Image pre-possessing such as light enhancement and image divider was applied to improve the 132 

accuracy of identification. Dehazing, a pre-processing algorithm, was used to improve visibility in 133 

naturally degraded (by low-visibility weather) images. An example of raw and pre-processed 134 

acquired images is shown in figure 2. Since buds are very tiny objects, an image divider was used 135 

to divide images into three equal parts to help with image labeling (Figure 2 b1, b2, and b3). An 136 

example of raw and pre-processed acquired images is shown in figure 2.  To obtain the ground 137 

truth for subsequent training, Makesense.ai, an image annotation tool, was employed to draw 138 

bounding boxes and classify categories manually for 2650 stereo images and 850 mobile images. 139 

At the time of labeling, it was ensured that the bud should be in the center of the bounding box. 140 

The data were categorized into two parts, the first category is one class (Bud), where the silver tip 141 

and green tip stages merge. The second category is three classes (silver tip, green tip, and tight 142 

cluster). These Two categories were defined in the annotation tool to label buds in the images. A 143 

.txt annotation format is required to train the YOLO model. Therefore, each class and location of 144 

the images were annotated with their corresponding information and saved in .txt format. The 145 

whole bud dataset was partitioned into 7:2:1 ratio for training, testing, and validation. A Python-146 

based open-source software makesense.ai has been used to annotate the target classes in images. 147 

The models have been trained with transfer learning by using the pre-trained weights. The 148 

detection model has been trained and tested in a local system on a single 16 GB NVIDIA GeForce 149 

RTX 2080 GPU.  150 

 YOLO network architecture 151 

The YOLO (You Only Look Once) network is a one-stage object detection algorithm which makes 152 

it versatile for real-time object detection. The YOLO series, including YOLOv5, YOLOv4, and 153 



YOLOv3, evolved from YOLO. YOLO employs end-to-end convolutional neural networks (CNN) 154 

to predict object position coordinates and classification, with a single pass of images into CNN 155 

making detection fast. It is based on the idea of segmenting an image into S*S square grid cells 156 

(Redmon and Farhadi, 2018). Each grid is responsible for predicting the boundary boxes for the 157 

target (Bochkovskiy et al., 2020). YOLO network mainly consists of three components, (1) the 158 

backbone, a deep convolution layers that extract features from input images, (2) the neck, which 159 

works as a feature aggregator that collects generated feature maps from different layers of the 160 

backbone, and (3) the head, it performs the prediction of the bounding box and the confidence 161 

score of that prediction. 162 

 YOLOv4 163 

YOLOv4 uses CSP densenet53 as a backbone CSP stands for Cross-Stage-Partial connections. 164 

The second stage of this neural network is the neck to collect feature maps from the different stages 165 

of the backbone and aggregate them for send to the head. YOLOv4 uses a modified path 166 

aggregation network (PANet), which includes bottom-up path augmentation that allows better 167 

propagation between lower layers and the topmost feature. Then, Adaptive feature pooling is used 168 

to aggregate features from all feature levels for each proposal. SPP block added between the feature 169 

extractor and feature aggregator to generate fixed-size features regardless of the input size and to 170 

increase the receptive field without affecting network operation speed. 171 

YOLOv4 uses a YOLOv3 (anchor-based) head, and the main function of the head is to predict the 172 

confidence score for each class and bounding box coordinates (x, y, w, h). YOLOv3 head is 173 

capable of generating three detection feature maps (large (16 x 16), medium (26 x 26), and small 174 

(52 x 52)) to perform multi-scale prediction. YOLOv4 also introduced Bag of Freebies (BoF) & 175 

Bag of Specials (BoS).  176 



 YOLOv5 177 

YOLOv5 is an upgraded version of YOLOV3 by adding BottleneckCSP, mosaic, Focus, SPP, and 178 

PANet module (Wang et al., 2022). YOLOv5 implemented in PyTorch framework instead of 179 

Darknet. It has the same CSPDarknet53 backbone with a focus layer. It is also a lightweight model 180 

than YOLO v4. YOLOv5 has five different sizes v5n, v5s, v5m, v5l, and v5x based on simple to 181 

complex network structures (depths and widths). Although, more complex networks provide better 182 

detection but require high computation power. 183 

 YOLOv7 184 

The YOLOv7 model is the latest version of the YOLO models. Extended efficient layer 185 

aggregation networks (E-ELAN), an extended version of the ELAN computational block enhance 186 

the learning ability of the model by using “expand, scramble, merge cardinality" without 187 

eradicating the original gradient path. E-ELAN alters only the computational block in the 188 

architecture, without changing the transition layer architecture.  189 

 Evaluation of the model performance 190 

To validate the algorithm performance and robustness, Intersection Over Union (IOU), Precision, 191 

mean average precision (mAP), Recall, and F1 score, were used on the test dataset. The number 192 

of objects that were detected correctly and false positives generated can be determined by 193 

Intersection Over Union (IoU) metric. IOU is a metric that quantifies the degree of overlap between 194 

ground truth and predicted bounding box. The predicted bounding box is considered a good and 195 

acceptable detection if IoU scores more than 0.5. Otherwise, it is unacceptable.  196 

𝐼𝑜𝑈 =  
|𝑃 ∩ 𝐺|

|𝑃 ∪ 𝐺|
 197 



where “P” represents the prediction bounding box and the “G” represents the ground truth 198 

bounding box. Precision measures the percentage of actually correct positive predictions. It 199 

measures the level of accuracy of the model prediction.  200 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 201 

Where TP is the number of true positive cases, FP is the number of false positive cases, and FN is 202 

the number of false negative cases. Recall measures the percentage of actual positives out of all 203 

Ground Truths 204 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 205 

F1-score is the harmonic mean of precision and recall. It calculates the balance between precision 206 

and recall. 207 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 208 

AP calculates the area under the precision-recall curve for each class and at the different thresholds. 209 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0

 210 

Where p, r is precision and recall respectively. The mean average precision is the average of AP 211 

with different IoU and all the classes. 212 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝐾

𝑘=𝑛

𝑘=1
 213 

𝐴𝑃𝐾 = 𝑡ℎ𝑒 𝐴𝑃 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘 214 

𝑛 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 215 



RESULTS AND DISCUSSION 216 

In this study, images have been collected for different growth stages of apple buds from the apple 217 

orchard located in FREC at Penn State University, USA. The dataset 70% of images have been 218 

randomly chosen for the training dataset to train the proposed detection model, and 30% of images 219 

are selected for both validation and test datasets. To obtain better accuracy during training, the 220 

image size of the input dataset was set to 1280×1280 due to the tiny bud size. The parameters such 221 

as initial learning rate, number of channels, momentum value, decay regularization referred to the 222 

original parameter in the YOLOv4, YOLOv5, and YOLOv7. In total of 80000 training steps were 223 

selected for better analysis of the training process. The resolution of the input image is 1280 × 224 

1280 for all bud detection model. As we discussed earlier, we have collected data from 2 devices. 225 

In order to verify the effectiveness of for apple flower bud detection model, three object detection 226 

algorithms and two datasets were compared in this study.  227 

 Comparisons of state-of-the-art models 228 

The rapid and precise identification of buds will not only be helpful for bud count estimation on 229 

the tree branches, but also it will provide a technical reference to the robotic bud thinning system. 230 

Therefore, in this study, three object detection algorithms YOLOv4, YOLOv5, and YOLOv7 were 231 

compared to analyze the bud detection performance. To achieve the best results from each model, 232 

the image input sizes were 1280×1280 for all models. The test results from table 2 showed that the 233 

mAPs of YOLOv4, YOLOv5, and YOLOv7 algorithms with one class on dataset-1 were 98.99%, 234 

75.50%, and 72.90%, respectively; the model sizes were 244 MB, 41 MB, and 71.8 MB, 235 

respectively. 236 

Table 2. Comparison of P, R, F1-score, and mAP between state-of-the-art models: YOLOv4, 237 

YOLOv5, and YOLOv7 on dataset-1. 238 



Dataset-1 (Stereo Data) 

 

1 Class 

 

3 Classes 

YOLOv4 YOLOV5 YOLOv7 YOLOv4 YOLOv5 YOLOv7 

mAP 98.9 75.5 72.9 95.3 80.9 76 

P 93.0 76.5 73.7 89 77.3 72.4 

R 98.0 71.2 71.2 95 78.0 74.5 

F1 score 96.0 73.8 72.4 92 77.6 73.4 

Table 3. Comparison of P, R, F1-score, and mAP between state-of-the-art models: YOLOv4, 239 

YOLOv5, and YOLOv7 on dataset-2. 240 

Dataset-2 (Mobile Data) 

 

1 Class 

 

3 Classes 

YOLOv4 YOLOv5 YOLOv7 YOLOv4 YOLOv5 YOLOv7 

mAP 94.07 79 73 98.37 76.5 66.9 

P 92 75.6 74.6 95 73.7 66.9 

R 91 73.9 67.7 96 73.6 66.2 

F1 score 91 74.74 70.98 95 73.65 66.55 

Table 2 also indicates that the performance of YOLOv7 performed the worst compared to 241 

YOLOv4, YOLOv5 for one class with minimum P, R, and F1-score of 20.75%, 27.34%, and 242 

24.56% respectively. While YOLOv5 demonstrates better performance compared to YOLOv7 243 

with a 1.83% increase in F1-score and a 3.56% increase in mAP, respectively. However, YOLOv4 244 

provided superior results compared to YOLOv5 with 21.56%, 37.60%, 30.17%, and 31.11% 245 

increases in P, R, F1-score, and mAP, respectively. To summarize, the YOLOv4 with one class 246 

outperforms other state-of-the-art models in terms of detection accuracy, which makes it a 247 

promising model for high-performance real-time bud detection. 248 



Performance of models with one class and multiple classes  249 

To verify the performance of the model in detecting buds at different categories of growth stages. 250 

The images were collected at three different growth stages. These growth stages are silver tip, 251 

green tip, and tight cluster. To verify the generalization ability of the model data were annotated 252 

in two categories, the first category is one class (Bud), where the silver tip and green tip stages are 253 

merged. The second category is three classes where silver tip, green tip, and tight cluster are 254 

separated. The models detection results on dataset-1 with both categories are shown in figure 3. 255 

From the figure 3, it can be seen intuitively that the recognition accuracy for both categories is 256 

different. The specific results of the comparison between the two categories for dataset-2 are 257 

shown in table 3.  YOLOv4 algorithm mAP reached 98.99% with one class and 95.25% with three 258 

classes on dataset1. The YOLOv5m and YOLOv7 mAP reached 75.5%, and 72.9% with one class, 259 

and 80.90%, and 76.0% respectively with three classes on the same dataset. It can be seen from 260 

table 3 that the YOLOv4 with one class provided more accurate results as compared to the three 261 

classes on dataset-1. According to table 4, the APs with YOLOv5 in the tight cluster, silver tip, 262 

and green tip were 2.50%, 20.17%, and 23.1% lower than those with YOLOv4. Moreover, the 263 

YOLOv7 AP of silver tip and green tip were 25.18%, 32.47%, and the tight cluster are 3.73% 264 

lower than the YOLOv4 respectively. Which meant that YOLOv4 achieved better detection results 265 

than the other state of the art models.  266 



 267 

Figure 3. Detection results of different growth stages of flower bud on datasets-1 from YOLOV4, 268 

YOLOv5, YOLOv7 models. 269 

The test result also revealed that the AP of the tight cluster class was higher than the silver tip or 270 

green tip in all models, the reason for this is the tight cluster size is larger than the silver tip and 271 

green tip. Besides, sometimes it is difficult to differentiate between silver tip and green tip. Hence, 272 

the model had a poor ability to distinguish between the silver tip and green tip, being the cause of 273 

the simultaneous decline in the AP indicators of both. However, YOLOv4 achieves reasonable Ap 274 

in the silver tip and green tip detection over the YOLOv5 and YOLOv7. Thus, it is apparent from 275 

the previous comparison that the YOLOv4 model significantly outperforms YOLOv5 and 276 

YOLOv7 in terms of overall performance. Which makes it effective and feasible model for 277 

accurate and fast bud detection. 278 

Table 4. Comparison of average precision results of YOLOv4, YOLOv5, and YOLOv7 on 279 

Stereo and mobile datasets. 280 

Average Precision Results 

 

Dataset-1 (Stereo Data) 
 

Dataset-2 (Mobile Data) 

YOLOv4 YOLOv5 YOLOv7 
 

YOLOv4 YOLOv5 YOLOv7 



Silver tip 93.96 75.00 70.30 96.77 62.40 47.00 

Green Tip 93.74 72.10 63.30 99.18 74.90 65.50 

Tight Cluster 98.06 95.60 94.40 99.15 92.20 88.20 

 281 

 Generalizability of state-of-the-art models 282 

Another image dataset (dataset-2) was used to demonstrate the generalizability of YOLOv4, 283 

YOLOv5, and YOLOv7.  The models detection results on dataset-2 with both categories are shown 284 

in figure 4. Detection results of YOLOv4, YOLOv5, and YOLOv7 on dataset-1 and dataset-2 are 285 

shown in table 3. The mAPs of YOLOv4, YOLOv5, and YOLOv7 on dataset-2 with one class 286 

(94.00%, 79.00%, and 73.00%, respectively) were slightly lower than those on dataset-1. F1-scores 287 

have been compared of these models to evaluate the efficiency detection performance which shows 288 

5.2%, 1.34%, and 1.98% declination in YOLOv4, YOLOv5, YOLOv7 respectively on dataset-2 289 

with 1 class over dataset-1. Overall dataset-1 showed better performance on all the models as 290 

compared to dataset-2.  291 

However, the AP of all silver tip, green tip, and tight cluster detection with YOLOv4 on dataset 2 292 

was 3%, 5.8%, and 1.1% higher than that of dataset-1, while the AP of silver tip, and tight cluster 293 

by YOLOv5 on dataset-2 was 62.4%, 92.2% which was 20.2%, 3.68% lower than that of dataset-294 

1. As shown in table 4, the mAP achieved by YOLOv4 with 1 class was 5.23% higher than 295 

YOLOv5 on dataset-2, while the mAP of three classes achieved by YOLOv4 on dataset-2 was 296 

3.27% higher than dataset-1. These results interpret that the detection performance of YOLOv4 on 297 

dataset-1 was better than that of dataset-2. The reason for the variation in the results of the same 298 

model on different datasets could be the dataset-2 resolution was lower than dataset-1 and the 299 

images in dataset-2 were also less. 300 



 301 

Figure 4. Detection results of different growth stages of flower bud on datasets-2 from YOLOV4, 302 

YOLOv5, YOLOv7 models. 303 

In summary, most of the previous studies have developed algorithms for apple fruits, flowers, and 304 

branches detection for different purposes. However, there are no such studies on apple flower bud 305 

detection at an early stage. The YOLOv4 model used in this study can be used as a vision system 306 

in an automated apple bud-thinning robot and will provide bud location guides to the end-effector. 307 

For early crop load management, robotic bud thinning could be the potential solution to reduce 308 

labor requirements and production costs in a long term. Although it is notable that the YOLOv4 309 

achieved considerable results since its mAP was the highest among the two contrasted algorithms, 310 

which represents the model has excellent target detection ability. However, the size of the 311 

YOLOv4 model is 244 MB, which is relatively large in terms of recognition of objects and may 312 

rise the deployment cost in the embedded devices of the vision system of the bud thinning robot. 313 

In the future, the vision system would also need the branch diameter and bud count algorithm 314 

development for decision-making for bud adjustment. In the next step, in order to adjust the 315 



number of buds on a branch, a bud removal end-effector will integrate with the manipulator and 316 

vision system. 317 

CONCLUSION  318 

State-of-the-art deep learning models have attained promising detection accuracy of agricultural 319 

objects in natural environment. Apple flower bud detection method based on YOLOv4-with 320 

transfer learning was proposed in this study to obtain good detection performance. The study 321 

compared the detection performance of YOLOv4 with YOLOv5, and YOLOv7 networks with 322 

different datasets and classes. The results showed that under the same conditions, the YOLOv4 323 

algorithm achieved the highest accuracy and generalization ability among the three algorithms for 324 

the detection of flower buds in different datasets, which met the requirement of detection time for 325 

robotic bud thinning. Furthermore, it is found that YOLOv4 significantly achieved the most 326 

satisfactory detection results in different bud growth stage detection followed by YOLOv5 and 327 

YOLOv7 in conditions of complex scenes, which signifies it has better performance on small 328 

objects. The YOLOv4 model can be potentially used for robotic bud thinning in the complex 329 

orchard environment. Future work will focus on the application of this model in the vision system 330 

with integration of a robotic bud thinning system to remove flower buds at different growth stages. 331 
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