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 SIMULATING LAGOON SLUDGE DRYING IN SOLAR-ASSISTED 1 

GREENHOUSE DRYING SYSTEMS 2 

PIYUSH PATIL, MAHMOUD SHARARA 3 

Highlights 4 
• Solar-assisted greenhouse drying is impacted by weather, moisture content and sludge mixing.  5 
• Average drying rates over 34 days ranged from 2.2 to 2.9 kg m-2 d-1. 6 
• Maximum carbon and nitrogen lost during drying were 12% and 14%, respectively. 7 
• A neural network model successfully simulated (R2 > 0.91) lagoon sludge greenhouse drying.  8 

ABSTRACT. Greenhouse sludge drying is gaining wider acceptance in agricultural and municipal 9 

applications due to the low cost, low energy inputs, and simple operation involved. This approach 10 

leverages weather and management practices to facilitate drying. This study evaluated greenhouse sludge 11 

drying and the impacts of weather conditions, air exchange rate and material properties on drying rate. 12 

Excavated swine lagoon sludge, loaded at 158-177 kg m-2, was dried in two greenhouses (488.9 m2 each) 13 

near Warsaw, North Carolina. The impact of ventilation rate, ranging between 1.1 and 4.6 m3 m-2 min-1, 14 

was evaluated during the 34 day (d) drying test. A two-phase drying process was observed: average drying 15 

rate during the first phase was 4.3±2.0 and 4.5±1.7 kg m-2 d-1 for GH#1 and GH#2, while the second phase 16 

showed rates between 0.6±1.9 and 0.1±2.3 kg m-2 d-1. The following factors were significant predictors of 17 

the drying rate: solar radiation, sludge moisture, ambient temperature and relative humidity, time since 18 

mixing event, and ventilation rate. Cumulative carbon and nitrogen loss during the process was up to 12 19 

and 14%, respectively. Statistical models developed to predict drying using process variables and 20 

management decisions performed well (R2>0.80), but the absolute penalty neural network model 21 

outperformed other models’ predictions in both greenhouses (R2> 0.91, RASE <33.5 kgH2O hr-1). This 22 

study is a first of its kind to evaluate feasibility of greenhouse sludge drying in Southeastern US. Findings 23 

and models developed in this study will increase process efficiency and incentivize adoption of on-farm 24 

greenhouse drying.  25 

Keywords. Swine Lagoon, Neural Network, Solar greenhouse drying, drying rate,  26 
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INTRODUCTION 27 

North Carolina is a leading US swine producing state with more than 1,400 permitted farms, majority 28 

of which are feed-finish farms, all heavily concentrated in the Southeastern region of the state. The sector 29 

produced an average of 18.9 million heads per year from 2000 to 2022 (NASS, 2023). Anaerobic lagoons 30 

are the primary method of manure management on these farms where manure is stored and treated for use 31 

as two fractions: liquid supernatant and sludge. A median sized feed-finish farm in North Carolina, with 32 

3,500 finishing heads (Aghdam, 2022), produces 70.4 Mg of sludge dry matter each year (Bicudo et al., 33 

1999; John P. Chastain, 2006) containing ~9.7 Mg of P2O5 (Owusu-Twum and Sharara, 2020). Regulatory 34 

guidelines stipulate sludge removal if it occupies more than 50% of the designed lagoon treatment volume. 35 

Without affordable practices for the management of lagoon sludge nutrients, however, many farms opted 36 

to allow sludge accumulation and, if feasible, remove enough sludge to stay in compliance. The NC swine 37 

industry, at the current production rate, generates 52,372 Mg of P2O5 annually in sludge, which is 38 

equivalent to 56% of 2011 NC fertilizer P2O5 purchase (Commercial Fertilizer Purchased, EPA). A major 39 

hurdle facing recycling this valuable asset, however, is the difficulty of recovering these nutrients in a 40 

compact and transportable form. Current sludge management practices recover sludge at a total solid (TS) 41 

content between 8% and 12%, which greatly limit transportation. Another challenge in swine sludge use 42 

in NC is its high P concentration and elevated soil phosphorus index (P-I) (Johnson, 2004) in areas 43 

surrounding animal operations. Export of swine sludge nutrients where they will be valued and could be 44 

agronomically utilized will results in its sustainable use. However, transportation costs escalate for longer 45 

hauling of wet substrates. Treatment initiatives that reduce weight and volume without losing or diluting 46 

nutrients are hence needed for sustainable swine sludge management.  47 

Drying is a potential alternative that can be employed to reduce sludge volume and moisture content. It 48 

can concentrate and retain sludge nutrients, hence producing a marketable and nutrient-rich product. Other 49 

applications for dried swine lagoon sludge include its use as a combustion feedstock, or co-ingredient, for 50 
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renewable electricity generation, or pyrolysis for biochar and syngas production. Drying, however, is a 51 

capital and energy intensive process and is not typically economical for residual materials and agricultural 52 

byproducts like lagoon sludge, especially when expenses are borne by producers. A detailed analysis of 53 

several commercial drying systems, conducted by Sharara (2022), reported drying costs between $90 and 54 

$156 Mg-1 dry matter (DM), with additional costs associated with sludge removal and aggregation 55 

(centralization). Another crucial observation was the high demand of electricity (27 to 170 kWhr Mg-1
H2O

 56 

evaporated) and natural gas (1,550 to 2450 MJ Mg-1
H2O

 evaporated) for conventional drying. Furthermore, 57 

farm scale systems may lose the advantage of economies-of-scale and energy use efficiency making 58 

conventional drying systems unsuitable for swine lagoon sludge management.  59 

Drying using enclosed, ventilated solar greenhouse systems present a simpler alternative and can 60 

achieve comparable results with added benefits. These systems use incident solar radiation and ambient 61 

weather conditions,  coupled with forced ventilation, material mixing, and optional supplemental heating 62 

to facilitate drying  (Seginer et al., 2007; Seginer and Bux, 2006). Variability in these factors, however, 63 

results in slow and variable performance, unlike conventional drying systems (Bennamoun, 2012). While 64 

solar systems have lower energy consumption (24-28 kWhr Mg-1
H2O

 evaporated) (Bux et al., 2002), they 65 

require a larger footprint. They are typically considered to be economical due to low infrastructure, 66 

machinery and maintenance costs (Boguniewicz-Zablocka et al., 2021a). While these systems have been 67 

studied for managing industrial waste and wastewater treatment sludges, no studies have reported the 68 

performance of these systems for animal manure or sludge in Southeastern US. In addition, no tools are 69 

currently available to help optimize the operation of such systems. 70 

This study aimed to address this knowledge gap through evaluating the drying performance of swine 71 

lagoon sludge in a pilot scale ventilated greenhouse system that was newly built in Eastern NC. The main 72 

objective is to understand the impact of weather conditions, material mixing and ventilation rates on drying 73 
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rates. Furthermore, this study developed and evaluated different empirical models to predict drying using 74 

process variables and management decisions. The findings in this study provide necessary information 75 

and tools to help researchers, producers, and stakeholders evaluate the economic and environmental 76 

performance of this technology as an option for animal producers in the state and beyond.  77 

MATERIALS AND METHODS  78 

SWINE LAGOON SLUDGE REMOVAL AND HANDLING 79 

Lagoon sludge was sourced from a farrow-wean swine farm (4,719 allowable heads) in Duplin County, 80 

North Carolina, USA. The Sludge was removed using an excavator (313F, Caterpillar, Inc., Peoria, Illinois, 81 

USA) equipped with a modified skeleton bucket attachment (Teran Industries, Miami Florida, USA) and 82 

mounted on a floating barge.  The barge navigated across the lagoon using guided cables and the excavator 83 

arm. The excavated sludge was collected in a roll-off dumpster stationed on the barge, the capacity of 84 

which was 11.5 m3 (15 yd3), then emptied into a lorry at the end of each removal cycle. Sludge samples 85 

were collected during transfer to characterize as-removed sludge. Subsequently, the excavated sludge was 86 

transported to an open, contained storage where it was stored for less than two weeks. The required amount 87 

of sludge was transported 25 km to the greenhouses site where it was staged before the commencement 88 

of the drying study.  The sludge was spread through the greenhouses using a skid steer. The material 89 

loading rate was 177.2±9.7 for greenhouse #1 (GH#1) and 158.2±9.7 kg m-2 for greenhouse #2 (GH#2). 90 

GREENHOUSE, VENTILATION AND SLUDGE TILLING SYSTEM 91 

Two greenhouses (pointed-arch design) were employed to study sludge drying. Each greenhouse had a 92 

drying area of 444.5 m2 (For dimensions refer Figure 1). Each greenhouse had entrances at both ends 93 

(garage-style), which were primarily used for material loading, unloading, and handling. Greenhouse 94 

ventilation was facilitated through mechanical tunnel ventilation, i.e., flexible louvers to allow air entrance 95 

on inlet side (4.5 m2 louvered area), and four ventilation fans on exit side (HS9084, Hog Slat, Newton 96 
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Grove NC, USA), each had 504 m3 min-1 airflow rate and 0.75 kW power rating. 97 

 98 

Figure 1 Picture of sludge excavation, greenhouses, onsite weather station and sludge mixing. 99 

A programmable logic system (PLC) was developed to control fan operation during drying process for 100 

both greenhouses using air temperature and relative humidity sensors (DOL 104, Aarhus, Denmark), 101 

which were used to calculate air psychrometry via a code block in the PLC.  The PLC was programmed 102 

to control fans in each greenhouse based on the difference in absolute humidity between ambient air and 103 

exhaust air. Fan operations ceased when absolute humidity difference was less than 1.6 g m-3 (0.1 lbs. 104 

1,000 ft-3). Two fans would operate when absolute humidity difference was greater than 3.2 g m-3 (0.2 lbs. 105 

1,000 ft-3) and all four fans would be operational when absolute humidity difference rises to 6.4 g m-3 (0.4 106 

lbs. 1,000 ft-3). When ambient air relative humidity exceeds 90%, a system override terminates all fan 107 

operations to minimize risk of rewetting the sludge.   108 
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 In this study, only one greenhouse (GH#1) was managed using the PLC logic detailed earlier. Fan 109 

operations in the second greenhouse (GH#2) were changed manually, with each interval between 48 and 110 

72 hours. The manual fan scheduling started with one fan (1F) in the first interval, followed by two fans 111 

(2F), then three (3F) and finally four fans (4F). The same fans sequence was repeated in a cyclic manner 112 

until the end of drying. In both greenhouses, the sludge was mixed using a tractor-operated rotary tiller 113 

(55 HP, John Deere) at the start of each interval. These fan settings correspond to a nominal air velocity 114 

of 1.1. 2.3, 3.4 and 4.6 m s-1 115 

DATA COLLECTION AND ANALYSIS 116 

Temperature and relative humidity of exhaust air were measured and recorded every 30 seconds using 117 

HOBO sensors (UX100-003, Onset, Bourne, MA, USA) fitted on each fan in both greenhouses. An 118 

additional sensor recorded local ambient temperature and relative humidity conditions. Uptime for each 119 

ventilation fan was logged by the PLC system on an hourly basis. A nearby weather station, i.e., 120 

Horticultural Crops Research Station, which is part of the state climate monitoring network (18 km from 121 

experiment site) was also used to retrieve ambient temperature, relative humidity, and solar radiation 122 

observations every minute throughout the experiment duration. Ambient and exhaust air properties and 123 

ventilation rate were used to determine vapor loss (VL) on hourly basis as follows:  124 

𝑉𝐿 = 𝑄 × [
𝑊𝑒𝑥𝑡

𝑉𝑒𝑥𝑡
−

𝑊𝑎𝑚𝑏

𝑉𝑎𝑚𝑏
 ] (1) 125 

where 𝑄 = ventilation rate (m3 h-1), 𝑊= average humidity ratio (kg H2O kg -1 dry air), and 𝑉 = specific volume 126 

of air (m3 kg-1
dry air), with 𝑒𝑥𝑡 and 𝑎𝑚𝑏 subscripts represent exhaust air and ambient air properties, 127 

respectively. Values for humidity ratio and specific volume were determined from psychrometric air 128 

properties using temperature and relative humidity observations. A workflow using MATLAB (R2021a, 129 

9.10), Oracle Crystal Ball (Version 11.1) and Microsoft Excel (Version 16.65) was used to conduct the 130 

necessary computations.  131 
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For sampling purposes, the greenhouse was into gridded into nine grid cells representing front, middle 132 

and end of greenhouse (each cell is 3.6m by 15m). One sludge sample was collected from each grid cell 133 

at the beginning of each airflow interval. Each of the nine samples were analyzed for moisture and volatile 134 

solids content. In addition, for each sampling event, homogenous subsamples representing each zone: 135 

‘front’, ‘middle’, and ‘exit’ was composited from corresponding grid cells. Theses samples were analyzed 136 

to determine elemental composition, i.e., carbon (C), nitrogen (N), phosphorus (P), zinc (Zn) and copper 137 

(Cu) concentrations. Four sludge height observations were recorded for each grid cell at the start of every 138 

interval. Bulk density was measured in triplicates using grab samples from across the greenhouse during 139 

start, end of experiment and at select sampling events. The experiment was terminated when the sludge 140 

moisture content on wet basis reached less than 30% in both greenhouses. The total weight of dried sludge 141 

removed each greenhouse was determined and recorded.  142 

STATISTICAL ANALYSIS  143 

Analysis of variance (ANOVA), mean’s comparisons, and predictive models’ development were carried 144 

out using JMP-Pro 16 software (SAS Inc., Cary, NC). The dataset for GH#2 was divided into training 145 

(60%), validation (20%) and test (20%) for predictive modeling purposes. Three models predicting the 146 

rate of drying were developed, i.e., multiple linear regression, decision tree, and neural network (NN). 147 

Multiple linear regression was developed using stepwise analysis to include relevant independent 148 

variables. Decision tree analysis partitions data based on response and predictor relationships with 149 

decreasing importance. It was chosen considering the ease in result interpretation with findings directly 150 

used in PLC algorithm development. The NN model was developed with one hidden layer that had three 151 

activation functions: hyperbolic tangent (tanH), linear identity function and Gaussian function. An 152 

absolute penalty method with ten tours was used to determine appropriate prediction model. This method 153 

avoids overfitting by refitting the model a given number of times (tours) with random starting parameter 154 
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estimates to determine best estimates. The observations from GH#1 were used to validate the best model 155 

generated and evaluate reliability of predictions. 156 

RESULTS 157 

SUBSTRATE PROPERTIES 158 

The floating barge excavator facilitated sludge removal without significant dilution from lagoon liquid 159 

(supernatant) resulting in a higher dry matter content (Table 1). However, the wide range of dry matter 160 

observed was attributed to the non-compacted (fluid-like) portion of the recovered sludge. The variability 161 

between compacted and fluid-like portions of the sludge was visually observable during sampling. This 162 

variability was also reflected in the elemental analysis of the excavated sludge samples. This variability, 163 

however, was not relevant in the sludge at drying commencement. This can be attributed to the staging 164 

period where pooled substrate from multiple excavation tours was combined resulting in a more 165 

homogenous mixture. At the start of the experiment, the average dry matter content was 33.0% ± 1.1% 166 

and 29.4% ± 1.7% in GH#1 and GH#2, respectively.  167 

Table 1. Characteristics of freshly excavated and initial sludge used in Greenhouses 1 and 2 (GH#1, GH#2). 168 

Parameter Excavated Sludge 

Initial wet sludge Dried Sludge  

GH#1 GH#2 GH#1 GH#2 

Analytical 

method 

DM (% of wet mass) 29.0 ± 13.2 33.0 ± 1.1 29.4 ± 1.7 68.7 ± 6.7 78.7 ± 1.8 APHA 2015 

VS% (% of DM) NA 39.7 ± 2.0 46.4 ±5.2 41±2 44±3 APHA 2015 

pH 8.0 ± 0.1 8.1 ± 0.1 8.2 ± 0.0 7.2 ± 0.1 7.3 ± 0.1 EPA 9045D 

EC 3.2 ± 0.1 4.0 ± 0.2 4.2 ± 0.0 4.3 ± 0.5 5.0 ± 0.2 EPA 9045D 

C (g/kg) 227.8 ± 117 185.1 ± 10.1 200.9 ± 3.1 170.3 ± 6.8 175.7 ± 6.2 AOAC 972.43 

N (g/kg) 49.9 ± 26.3 37.4 ± 2.4 41.4 ± 1.1 33.5±1.3 35.7±0.8 AOAC 972.43 

NH4-N (g/kg) 24.6 ± 15.2 14.8 ± 1.4 16.6 ± 3.7 10.5±0.4 11.9±0.3 EPA 350.1 

C/N 4.6 ± 0.0 4.9 ± 0.2 4.9 ± 0.1 5.1 ± 0.0 4.9 ± 0.0 NA 

P (g/kg) 73.8 ± 6.2 67.9 ± 2.3 73.5 ± 1.6 66.4 ± 1.7 72.0 ± 0.4 EPA 200.7 

K (g/kg) 5.6 ± 0.4 5.6 ± 0.3 6.2 ± 0.1 5.7 ± 0.2 6.4 ± 0.1 EPA 200.7 

Zn (g/kg) 3.6 ± 0.8 3.4 ± 0.05 4.9 ± 0.4 3.7 ± 0.6 4.9 ± 0.2 EPA 200.7 

Cu (g/kg) 2.1 ± 0.1 1.6 ± 0.04 1.8 ± 0.2 1.6± 0.1 1.9± 0.1 EPA 200.7 

NA: Not available, mean ±SD (n= 3), all concentrations are specified on dry basis unless mentioned otherwise.  169 
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EFFECT OF DRYING ON MOISTURE CONTENT, MATERIAL HEIGHT AND BULK DENSITY 170 

The drying progress was tracked through moisture content change (d.b., MCdb) as shown in figure 2a. 171 

By the 15th day, the dry-basis moisture content decreased to 110.2±24.4% and 103.7±23.6% in GH#1 and 172 

GH#2, respectively. Additional 19 days were needed to reach 41.4±16.6% and 25.5±7.2% moisture 173 

content in GH#1 and GH#2 respectively. The variability in moisture content at each interval, indicated by 174 

reported standard deviation values, is attributed to the spatial variability in drying along airflow path from 175 

front to exit and, the gap in material loading. The average initial moisture content of samples in the front, 176 

middle and end grid cells in GH#2, were 256.0±64.8%, 192.5 ± 9.4%, 176.7±30.9% respectively, which 177 

was primarily due to gap in material loading as the material in the end section was loaded a week before 178 

the study commencement while the rest was loaded 24 hours earlier. At the end of the experiment, moisture 179 

contents in the GH#1 at the front, middle and end grid cells were 23.8±4.2%, 60.2±5.2% and 40.3±8.3% 180 

respectively, although all the material was loaded at the same time i.e., 24 hours before the 181 

commencement. 182 

Average daily drying rate estimates show two distinct drying phases that represent the first and second 183 

falling rates (figure 3a, 3b). The constant rate drying phase was not observed in this study which could be 184 

attributed to the absence of free moisture in the sludge. The average drying rate during the first phase, i.e., 185 

MCdb > 100%, was 4.3±2.0 and 4.5±1.7 kg m-2 d-1 for GH#1 and GH#2, respectively. The drying rate 186 

dropped to 0.6±0.9 and 0.1±1.1 kg m-2 d-1 during the second phase. The maximum drying rates observed 187 

in the first phase was 7.2 and 6.5 kg m-2 d-1 in GH#1 and GH#2 respectively, while the maximum drying 188 

rates in the second falling phase were 2.1 and 4.3 kg m-2 d-1 for GH#1 and GH#2 respectively. 189 
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 190 

Figure 2. Observed changes in a) sludge height and b) bulk density, c) moisture content (dry basis) because of 191 
ventilated greenhouse drying. 192 

Sludge height and bulk density were monitored during the drying period to correlate weight loss and 193 

with volume reduction (shrinkage). Sludge height on the 15th day, 12.8 ± 4.0 cm in GH#1 and 10.8 ± 1.7 194 

cm in GH#2, was 40 to 51% lower than at the start of drying. Correspondingly, a decrease between 21-195 

24% in material bulk density was also observed during this period. Figures 2b and 2c track average 196 

material heights and bulk density during the 34-d drying period. Variation in material height primarily 197 

indicates the spatial variability in material loading across the greenhouse. Variation in bulk density was 198 

attributed to the transition in sludge physical properties from paste-like to granular.  199 
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 200 

Figure 3. Observed average drying rate in a) GH#1, b) GH#2 as a function of moisture content (dry basis). 201 

ACCOUNTING OF MASS AND VAPOR LOSSES  202 

Sludge sampling and analysis were used to track losses of water, organic matter, and nutrients during 203 

the drying process. While the final weight of material recovered from GH#1 and GH#2 was recorded, i.e., 204 

36.2 and 28.8 Mg respectively, logistical challenges prevented measuring initial total wet weights in both 205 

greenhouses. The initial wet weight of sludge was back-calculated using properties of initial and final 206 

sludge and assuming no change in ash content. The variability in material properties was incorporated into 207 

the initial weight estimates using Monto-Carlo simulation. On the other hand, cumulative water vapor loss 208 

was calculated using air properties along with hourly ventilation rates. We observed carbon loss of 12 ± 209 

6% and 4±6% during drying from GH#1 and GH#2 respectively. Nitrogen losses were estimated to be 210 

14±7% in GH#1 and 5±6% in GH#2. Differences in the carbon and nitrogen losses between GH#1 and 211 

GH#2 were observable however, not statistically significant (p > 0.05) indicating no effect of different 212 

ventilation techniques employed. Figure 4 illustrates the overall mass balance for both greenhouses, 213 

calculated water vapor loss amounted to 104±10% and 79.5±8% of weight loss estimated in GH#1 and 214 

GH#2 respectively. These mass balance estimations indicate the methodology used to track water loss on 215 

hourly basis via mechanical ventilation was adequate to represent the entire drying process.  216 
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 217 
Figure 4. Observed mass loss (vapor and organic matter) and accounted vapor loss in greenhouses (GH#1, GH#2). 218 

DRYING PROCESS FACTORS 219 

Statistical analysis and model development were conducted using hourly dataset collected from GH#2 220 

split into training set (457 observations), validation set (174 observations), and test set (181 observations). 221 

Factors observed to be statistically significant in drying rate estimation (p <0.05) were ambient 222 

temperature, relative humidity, solar radiation, sludge moisture content and time elapsed since last tillage 223 

(mixing).  Seginer and Bux (2006) and Krawczyk, (2016) reported  weather conditions and management 224 

significantly impacted drying process in solar drying of wastewater sludge .  Ventilation rate (𝑄) was not 225 

observed to be statistically significant, although at least one fan was operational throughout the entire 226 

experiment duration in GH#2. As such, the results indicate that incremental changes in ventilation rate did 227 

not significantly affect water vapor loss rate.  228 

The multi linear regression model was the simplest model developed to estimate the drying rate (refer 229 
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to Appendix for model parameters). The decision tree (partition) model resulted in 66 logical data splits 230 

with decreasing importance of predictors. To reduce model complexity while maintaining prediction 231 

power, the decision tree was pruned resulting in 15 crucial splits. The neural network with learning rate 232 

(10%) and 10 trials was the most complex model developed, resulting in 30 individual equations with 10 233 

equations for each of the three nodes (i.e., tanH, Linear, Gaussian). The coefficient of regression (R2) and 234 

root averaged square error (RASE) values for the various models are listed in table 2. All models provided 235 

a fair prediction ability for training, validation, and test sets with R2 between 0.80 and 0.92. The absolute 236 

penalty NN model was the superior model, outperforming other models across all datasets.  237 

Table 2. Performance summary of Greenhouse drying prediction models 238 

Category Model R2 
RASE$ 

(kgH2O.h-1) 

Training 

Multiple linear regression 
                                                                                                                       

0.80  
                                       

33.1  

Decision tree* 

                                                                                                                       

0.87  

                                       

26.7  

Neural Network (absolute penalty) 
                                                                                                                       

0.93  
                                       

19.3  

Neural Network (10% learning rate) 

                                                                                                                       

0.92  

                                       

21.5  

Validation 

Multiple linear regression 

                                                                                                                       

0.82  

                                       

33.4  

Decision tree* 

                                                                                                                       

0.87  

                                       

28.1  

Neural Network (absolute penalty) 

                                                                                                                       

0.93  

                                       

21.1  

Neural Network (10% learning rate) 
                                                                                                                       

0.92  
                                       

22.4  

Test 

Multiple linear regression 

                                                                                                                       

0.85  

                                       

35.0  

Decision tree* 

                                                                                                                       

0.86  

                                       

33.7  

Neural Network (absolute penalty) 

                                                                                                                       

0.94  

                                       

21.5  

Neural Network (10% learning rate) 

                                                                                                                       

0.92  

                                       

24.7  

*Pruned tree with 15 splits, $Root average squared error (for forecasts) 239 
 240 

Model validation using GH#1 operation  241 

Drying in GH#1 was automated by using difference in humidity ratio between incoming and exhaust 242 

air as feedback to drive mechanical ventilation (using PLC controller). As a result, ventilation settings 243 

were changing at a faster rate than the hourly basis used for our data analysis and model development. 244 

Nonetheless, we sat out to test the absolute penalty NN model developed using GH#2 dataset to predict 245 
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the drying rate in GH#1. The model predicted hourly vapor loss using the following inputs: [1] predicted 246 

initial wet mass, [2] hourly ventilation records, [3] sludge mixing time records, and [4] weather conditions 247 

(temperature, relative humidity, and solar radiation). Predicted vapor loss was used to continuously update 248 

sludge moisture content for subsequent model evaluations until the moisture content reached the 249 

termination moisture content (experimental observation). Figure 5a illustrates predicted versus measured 250 

water vapor loss in GH#1.  The coefficient of regression (R2) indicated a good agreement between 251 

predicted and measured hourly water vapor loss rates. The model predictions were consistently below 252 

observed values, i.e., on average 17% lower than measured values.  253 

 254 

Figure 5. Summary of model predictions, a) vapor loss, b) moisture content for greenhouse drying. 255 

The instantaneous prediction model could better predict drying at peak conditions which are averaged 256 

to an hourly basis in the current model. Predicted moisture content (solid line, Figure 5b) were comparable 257 

to measurements made at sampling intervals (hollow triangles, Figure 5b). These results demonstrate good 258 

prediction ability for the absolute penalty NN model to predict drying performance of a PLC controlled 259 

greenhouse system. Such model is a valuable tool to study the impact of PLC set points on drying 260 

performance and energy consumption. However, it should be noted that this model was developed based 261 
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on observations for a part of the year and would need further data to improve performance and prediction 262 

ability for year-round drying performance. 263 

DISCUSSION 264 

Changes in sludge physical properties (height and bulk density) were observed to correlate to drying 265 

progress and can be potentially employed by operators as indicators of the drying phase. On average the 266 

sludge layer lost 50% of its height throughout the drying process. The high variability we observed, 267 

primarily due to variable spatial distribution of sludge initially and the implement used for sludge mixing 268 

(modified tiller), limited the ability to use these properties to estimate initial sludge mass in the 269 

greenhouse.  270 

Drying swine lagoon sludge did not significantly change its volatile solids content. Limited information 271 

is available on volatile solids loss during greenhouse drying. A few studies that analyzed drying aerobic 272 

wastewater treatment sludge (Bux et al., 2002, Sorrenti et al., 2022) have reported reduction of VS from 273 

74 to 41% during solar greenhouse drying. Swine lagoon sludge, unlike aerobic primary sludge, is a 274 

byproduct of anaerobic digestion after which it was continually stored for years. This results in a heavily 275 

degraded residue with marginal potential for further decomposition (Patil and Sharara, 2022), which is a 276 

positive attribute in this context as it eliminates concern for volatile organic compounds (VOC) emissions 277 

or abatement during drying.  278 

Although, no studies have previously reported reduction in carbon content during greenhouse drying, 279 

it is safe to assume that fraction of carbon reduction to be co-related to VS reduction from microbial 280 

pathway. The carbon and nitrogen loss estimates in this study were higher in GH#1 compared to GH#2, 281 

although not statistically significant. This could be due to differences in ventilation between greenhouses. 282 

Intermittent fan operation in GH#1 led to solar thermal energy accumulation and consequently higher 283 

internal temperatures boosting aerobic activity and leading to increased C and N losses.  The average 284 
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nitrogen losses observed in this study (4-12%) are comparable to observations in previous studies. 285 

O’Shaughnessy et al., (2008), analyzed nitrogen losses from open-bed drying of dewatered sludge from 286 

aerobic and aerobic wastewater treatment, and observed 23% N loss from anaerobically tilled sludge, and 287 

up to 74% N loss from aerobic tilled sludge. N losses were observed to be impacted by tillage and substrate 288 

type. Szypulska et al., (2021) observed ~11% N loss from thermal drying of dewatered wastewater 289 

treatment sludge. Due to the agronomic importance of N and concerns over its volatilization as NH3, 290 

additional efforts to estimate and reduce N losses are needed to quantify and mitigate these losses. 291 

Mass balance indicated higher agreement between water vapor loss and estimated weight loss for GH#1 292 

than in GH#2. Differences in ventilation strategy (PLC controlled vs. continuous) is suspected to be the 293 

driver for this observation. GH#1 also had an additional override to shut-off ventilation when ambient 294 

relative humidity was greater than 90%, unlike GH#2, which limited the risk of moisture addition to the 295 

system. Since, the HOBO sensors have a 5% error in relative humidity measurements when operated 296 

above 90% compared to 2.5% error below 90%, continued operation at high humidity conditions was a 297 

likely cause of the mass balance disagreement.  298 

The drying was affected by the sludge moisture content, weather conditions, and sludge mixing. Seginer 299 

and Bux, (2006) observed ventilation rate was also a critical factor. Other factors that impact drying rate 300 

is sludge mixing time. Rates of drying for wastewater treatment sludge in Poland was observed to vary 301 

from 0.5 to 2.5 kg m-2 d-1, depending on weather conditions (Boguniewicz-Zablocka et al., 2021b). Bux 302 

and Baumann, (2003) analyzed performance of 25 European solar sewage sludge drying plants in 303 

Germany, Austria, and Switzerland. They observed an average annual drying rate from 1.6 to 3 kg m-2 d-304 

1. The drying rate increased to 9.6 kg m-2 d-1 with supplementary heating. The average rate of drying 305 

observed in the current study, 2.2 to 2.9 kg m-2 d-1, exceeds values reported in European systems due to 306 

favorable conditions for solar drying in Southeastern US. However, the reported rates reflect a short 307 
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interval in annual operation cycle (Sept 19 - Oct 23, 2022) and continued monitoring is needed for more 308 

reliable performance estimates.  309 

Our results indicated the drying rate spiked in the first four to eight hours after mixing, followed by a 310 

gradual diminishing effect. The mixing was carried out at the start of every interval i.e., once in 48-72 311 

hours. As such, increasing the frequency of mixing can improve drying performance. Internal air 312 

circulation system, found to be an important variable in the process (Boguniewicz-Zablocka et al., 2021b), 313 

was a missing feature in the current system. Internal mixing increases the vapor gradient resulting in higher 314 

mass transfer across the sludge-air interface. Optimal ventilation system operation based on sensors and 315 

automation will further increase energy savings.    316 

CONCLUSION 317 

Swine sludge drying in mechanically ventilated solar greenhouses was evaluated in this study. Weather 318 

conditions, mixing events, and material moisture content impacted the drying rate. The height and bulk 319 

density served as indicators of drying progress during initial stages but did not provide reliable estimates 320 

of total mass in the greenhouse. This study is a first of its kind to investigate solar greenhouse sludge 321 

drying in Southeastern US and observed a drying rate of 2.2 to 2.9 kgH2O m-2 d-1. Continuous drying 322 

process monitoring using sensors provided fair estimate of water vapor loss (79% to 100% mass balance 323 

closure). Absolute penalty neural network model effectively predicted drying performance (R2 = 0.92) 324 

based on dominant predictors and was shown to be an effective tool in simulating and optimizing the 325 

process when integrated into a programmable logic controller (PLC) system. Ventilated greenhouse sludge 326 

drying is a promising alternative for swine lagoon sludge to reduce mass and volume and wider 327 

distribution of manure nutrients for sustainable recycling. Further technoeconomic and environmental 328 

assessments are needed to benchmark the potential of this technology compared to established and 329 

emerging ones. 330 
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