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Machine Learning Models using Remote Sensing for County-Level Corn Yield Prediction in the
Midwestern U.S.

Abstract

Climate change is causing corn yields to become more unpredictable, heightening the risks of

food insecurity and crop shortages. The United States is the largest producer and exporter of corn in the

world. The variable environmental conditions can affect year-to-year yield and best management

practices for corn farmers in the midwest. The United States Department of Agriculture (USDA) believes

there is a need for a free and publicly available yield-predicting model to help producers and other

stakeholders make informed decisions. With climate change being a growing concern, it is imperative to

have accurate prediction methods that account for variations in climate and other yield factors. The

current USDA prediction methodology requires a survey of thousands of farmers, making the predictions

labor-intensive, infrequent, and prone to human error. The goal of this project was to design and evaluate

a machine learning model that will predict corn yields on a county level for 12 states in the Midwest.

Models were tested using the USDA previous year predictions from 2008-2019 to train the models and

then evaluated the models’ predictive performance for the years 2020 and 2021. The models constructed

include Random Forest, Support Vector Regression, Ridge Regression, and Multilayer Perceptron. After

evaluating each of these models, Random Forest and Ridge Regression were the most accurate with R2

values of 0.84 and 0.85, respectively. These results show that machine learning models using remote

sensing data have the potential to to rival existing USDA prediction methods with their high accuracies

and extremely low cost.
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1. Problem Scope

Varying environmental conditions can affect year-to-year yield and best management practices for

corn farmers in the midwest. The USDA believes that corn producers need a free and publicly available

yield-predicting model to help them make informed decisions. The goal is to design and evaluate a

machine learning model that will predict corn yields on a county level for 12 states in the Midwest, using

free and already available yield, soil, and climate data as inputs. The final model and its evaluation should

be completed and ready to be presented by December 7th, 2022.

2. Technical Review

2.1 Background

Global warming has resulted in more climate variability, affecting food systems and water

resources. Droughts and extreme temperatures have negatively impacted corn production and have

resulted in more uncertainty in crop yield prediction (Kang et al., 2009; Crane-Droesch, 2018). Significant

storm events bringing excessive precipitation also damage corn yields, another factor contributing to crop

yield uncertainty (Li et al., 2019). With a changing climate, it has become increasingly essential to create

accurate models which allow farmers and policymakers to make informed decisions on how to best

manage their farms to ensure that there is an adequate food supply for the world's population

(Becker-Reshef, 2010; Wang et al., 2020; You, n.d.).

The United States is the world's leading producer and exporter of corn, supplying approximately

30% of global maize production (Ma et al., 2021; Li et al., 2019). Crop yield prediction is beneficial for

managing the economics of corn. Estimating crop yields can provide information for commodity trading

and insurance assessments (Kang et al., 2020; Cai et al., 2017). For producers, crop yield prediction

allows them to set goals, evaluate alternative methods, and optimize their management practices (Bocca

et al., 2015).

Since the dawn of agriculture, humans have been developing methods to predict crop yields

before harvest (Basso and Liu, 2019). Historically, farmers have estimated crop yield based on their field

observations and local knowledge. Adages such as "knee high by the fourth of July" served as

rudimentary predictors of corn yield (Westfall, 2021). Periodicals like the "The Farmers' Almanac" or "The

Old Farmer's Almanac" have been published seasonally since the late 18th century, providing weather

predictions to aid farmers in making management decisions (Walsh and Allen, 1981).

4



Farmers can better manage their fields by utilizing accurate models that provide insight into the

link between environmental stresses and crop growth (Guan et al., 2017). Models can be advantageous

in predicting weather patterns and their effects on yield, allowing farmers to adjust their budgeting and

harvesting plans accordingly (Bocca et al., 2015). Corn is a high-input crop and can contribute to

environmental degradation through nitrous oxide emissions and nitrogen and phosphorus-rich runoff. The

use of precise model estimates in agriculture can reduce inputs into the soil such as nitrogen and

phosphorus fertilizers, which have negative economic and environmental impacts when overused

(McNunn et al., 2019).

Machine learning models must include data inputs that provide relevant and valuable information

in order to create accurate predictions. The USDA's National Statistics Service conducts two-level

surveys that provide state and national yield estimates (Johnson, 2014). These past yield inputs are

valuable as they provide a basis for the models to be constructed or trained. Other inputs must be

considered as corn yield is highly variable and depends on many environmental factors. Inputs such as

temperature and precipitation explain about one-third of crop yield fluctuation (Ray et al., 2015). Another

variable utilized for crop prediction is vapor pressure deficit (VPD) which correlates with heat stress and

crop water. Other inputs utilized are vegetation indices (VIs), soil moisture, and satellite-based

evapotranspiration (Kang et al., 2020).

Several models can predict corn yield with varying levels of success; regression modeling has

been used to correlate environmental conditions and crop yields, but the development of machine

learning models has improved the accuracy of yield predictions. Machine learning models can handle

nonlinear and complex datasets (Khanal, 2018). Machine learning is advantageous as it can estimate

yield by creating relationships between the variables and the known yields. Machine learning models

produce more accurate yield predictions than traditional regression models (Kaul et al., 2005). However, it

can be difficult to quantify the uncertainty of these predictions because machine learning can operate like

a black box, where the processes or logic linking data inputs and outputs is not clear (L. V. Jospin, 2022).

Examples of existing machine learning models for crop yield prediction include deep neural networks

(DNN), Convolutional Neural Networks (CNN), Ridge Regression, and Random Forest. Analysis of the

accuracy of these models has been done in previous studies.
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2.2 Existing Technology

2.2.1 Machine Learning Model

Regression modeling is an older method of predicting unknown or future values and is often less

accurate compared to contemporary models. Most regression models assume linear relationships

between inputs and outputs, which is not always the reality. These models include Ordinary Least Square

and Least Absolute Shrinkage and Selection Operation (LASSO). A study analyzed these methods

against non-linear machine learning methods. The results showed that non-linear models produce

significantly more accurate results than linear regression models for corn yield predictions (Wang et al.,

2020).

Random Forest (RF) is a supervised learning algorithm that utilizes ensemble learning through

the use of many decision trees. Training data is required to teach the model the relationship between

features and known outputs. Once trained the model will output predicted values when given feature

values. Random forest, as its name suggests, utilizes multiple decision trees that run independently and

in parallel to each other to create a “forest” of decision trees. Figure 1 illustrates a forest voting to the final

output. To calculate the final output, the values from all decision trees are averaged to get the predicted

value (Biau, 2016). RF has been used commonly with remote sensing data. An assumption that this

model makes is that the variables will maintain their high/low value of prominence in the dataset. This

causes the model to not be as accurate with large complex data sets. One limitation of RF is that it cannot

extrapolate, meaning that its output is bounded by the highest and lowest values in the training set

(Hengl, 2018). This could be problematic if climate change creates novel weather conditions that result in

historically high or low corn yields, which this model will not be able to predict.

Figure 1: A forest of trees. The regression RF final output averages all the predictions for the

final value. (Chaya, 2020).
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Deep Neural Networks are new and accurate models. They are used because they are the best

at predicting the nonlinear relationship between input and output variables. Many relationships between

corn yield and environmental factors are nonlinear. Furthermore, certain weather conditions can either

help or hurt corn yield depending on the time in the growing season that they occur. Deep Neural

Networks work by stacking multiple nonlinear layers of connected nodes, or “neurons”. This model then

creates relationships between nodes, forming complex linkages between nodes in each layer. This

complexity generally adds to the accuracy of the model but becomes prone to overfitting in deep neural

networks with over 20 layers. . However, the development of the outputs is unknown as the relationships

are not readily apparent. Recent deep learning crop prediction model was developed by Khaki and Wang

in 2019. The study first created a weather prediction network shown in Figure 2. The figure displays one

layer of a neural network, known as a shallow neural network. One layer creates many relationships

within the input data to find the output variable. This network was created to predict weather to provide

the necessary information to determine crop yield. The full crop prediction model in Figure 3 depicts a

deep neural network with multiple layers. The model accounts for many different variables for predicting

corn yields. This diagram illustrates the increasingly complex relationships between the variables by

stacking the layers. This model is currently one of the most accurate for predicting corn yields (Khaki and

Wang, 2019).

A study by Kang et al. in 2020 set out to predict corn yield on a county-level for the Midwestern

U.S. using six different machine learning models: Lasso, Support Vector Regressor, Random Forest,

XGBoost, Long-short term memory (LSTM), and Convolutional Neural Network (CNN). The variables

used included weather data, land surface models, soil maps, crop progress reports, and satellite data.

The findings supported that the XGBoost was the best performing model in accuracy and stability,

whereas LSTM and CNN did not provide useful predictions (Kang et al., 2020).

Although these current models have produced accurate results, further improvements can be

incorporated into these predictors. These current models do not provide uncertainties that correspond

with their predictions (Ma et al., 2021). Building upon these current models and utilizing the most relevant

and accurate inputs, crop prediction can be a valuable resource to combat food insecurity in the wake of

the climate crisis.
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Figure 2: Shallow Neural Network: weather prediction (w) in a known location (l) of corn yield

over four years. Includes one hidden layer to create the output (Khaki and Wang, 2019).

Figure 3: Deep neural network: Various corn variables over four years that predict crop yield.

Includes twenty-one hidden layers to create the output (Khaki and Wang, 2019).

2.2.2 Remote Sensing

Recent improvements in remote-sensing technology have made it an incredibly valuable resource

for large-scale data gathering. Remote sensing data, specifically spectroradiometer data gathered by

satellites, can relatively cheaply provide information about vast areas of land (Wang et al., 2018). By

analyzing reflected spectra that bounce off of soil or vegetation on the earth's surface, many properties of

the soils and plants can be inferred. Various metrics have been developed based on reflected spectra

characteristics, such as Normalized Difference Vegetation Index (NDVI), two-band Enhanced Vegetation

Index (EVI2), and Normalized Difference Water Index (NDWI), which have significant predictive potential

for both maize and soybean yield (Bolton and Friedl, 2013). NWDI is especially effective at characterizing

the water content of vegetation and is less sensitive to atmospheric conditions, making it an ideal tool for

monitoring crop health (Gao, 1996). Incorporating vegetation indices from remote sending data into

predictive models has been found to dramatically increase the model's performance (Becker-Reshef et

al., 2010; Johnson, 2014; Guan et al., 2017; Peng et al., 2018).
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One existing machine learning model predicted soybean and corn yields based on Normalized

Difference Vegetation Index (NDVI) from satellite Moderate Resolution Imaging Spectroradiometer

(MODIS), nighttime and daytime land surface temperature from MODIS, and precipitation data from the

National Weather Service. By inputting data from 2006-2011 for the US Corn Belt, a regression

tree-based model was constructed at the county level with a coefficient of determination (R2) of 0.93. The

model was then used to predict yield for 2012 when a drought occurred. It predicted the yield with an R2

of 0.77 for corn and 0.71 for soybeans with RMSE values of 1.26 and 0.42 metric tons per hectare,

respectively (Johnson et al., 2014).

2.3 Fundamental equations

R2, RMSE and MAPE are standard performance metrics for evaluating the accuracy of a model's

predictions (Chicco D. 2021). These metrics are essential for developing and optimizing a predictive

model.

R2 is the coefficient of determination. R2 is the proportion of the dependent variable that can be

predicted from the independent variables.
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RMSE is the root mean square error, which detects the number and extremity of outliers.
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Mean Average Percent Error (MAPE) is a valuable metric that expresses the accuracy of

measurements. It is most useful when used for data that has relative changes compared to absolute

change (De Myttenaere et al., 2016).
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3. Design Requirements

● The final model should be able to create crop yield predictions that are 70% accurate compared

to actual crop yields. (client)

○ Percent Accuracy will be evaluated by Mean Absolute Percentage Error across all

counties for which predictions are made.

○ Models will be tested against 2020 and 2021 data.

○ Models will be evaluated based on the prediction that they would provide on August 20th

of a given year.

● The inputs to the model must contain the following county-level data from the selected 12

midwestern states: soil property data from Web Soil Survey, remote sensing data from Google

Earth, temperature data, and precipitation data. (client)

● The model must predict annual corn yields on a county scale for 12 selected states in the

midwest. (client)

● All data used for the model must be free and publicly available. (client)

● Final model output yields must be displayed on a map of the included states and counties. This

will allow the model output yields to be visually compared to a map of actual yields. (client)

4 Design Description

4.1 Overview

The broad goal of this model was to establish relationships between known measured variables

and end-of-season corn yields. The first step was acquiring the necessary data, in this case from the

USDA for yield data and Google Earth Engine for Vegetation Indices (VI), soil properties, and weather

data. Next, the data was pre-processed and formatted so that it could be understood by machine-learning

models. As part of this step, the historical yield for each county was derived from the USDA data,

time-series GEE data was aggregated into 16-day time periods, and any missing values were filled in.

Finally, all of the data was compiled into a full dataset. This full dataset could then be divided into training

and testing data in a variety of ways. Once split into training and testing data, models could be trained

and evaluated.
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4.2 Detailed Description

Figure 4: Flowchart showing modeling process

4.2.1 Data Inputs

Google earth engine and historical crop yield provided all the data sourcing for the model. Google

earth engine imported weather variables from the Parameter elevation Regressions on Independent

Slopes Model (PRISM) dataset, soil variables were uploaded from SSURGO which had Soil Available

Water Holding Capacity (AWC), Soil Organic Matter (SOM), and the cation exchange capacity soil

property map The vegetation index variables from MODIS NBAR (MCD43A4).

Vegetation indexes use satellite sensors to monitor landscapes. VIs measure the greenness of an

area and from those measurements a lot of information can be created. VI’s are found to be nearly

linearly related to the amount of photosynthesis produced by a plant. This relationship makes vegetation
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indexes a powerful predictor of crop yield. (Edward P. Glenn, 2008). The VI variables in our model were:

EVI, GCI, NDWI, and NDVI.

NDVI is the most widely used vegetation index. It is defined as:

NDVI (3)= 𝑁𝐼𝑅−𝑅
𝑁𝐼𝑅+𝑅

NIR is the reflectance values of Red and R is the near Infrared light received from the sensors. It

has a strong relation in predicting crop characteristics and chlorophyll content. (Rouse, 1973)

The Enhanced Vegetation Index (EVI) is defined as:

(4)𝐸𝑉𝐼 =  2. 5 ×  (𝑁𝐼𝑅−𝑅)
(1+𝑁𝐼𝑅+(6×𝑅−7.5×𝐵𝑙𝑢𝑒)

EVI Is an improved NDVI and has constants to account for soil and atmosphere influences. The

constant 1 accounts for the canopy background and the 2.5 and 7.5 minimize light variations. EVI is better

at predicting high biomass areas, photosynthesis, and plant transpiration (Edward P. Glenn,2008),

(Rouse, 1973).

(5)𝐺𝐶𝐼 =  𝑁𝐼𝑅
𝐺𝑟𝑒𝑒𝑛 − 1 

Green chlorophyll index (GCI) predicts the amount of chlorophyll in leaves. (Gitelson, 2003)

(6)𝑁𝐷𝑊𝐼 =  ρ(.086µ𝑚)−ρ(.1.24µ𝑚)
ρ(.086µ𝑚)+ρ(.1.24µ𝑚)

The Normalized Difference Water Index (NDWI) is used to measure the amount of liquid water in

vegetation from space. represents the radiance in reflectance units. The .86 and 1.24 are reflectancesρ

that find the amount of liquid water in a canopy (Gao, 1996).

4.2.2 Data Preprocessing

Historical yield data were calculated for each county and year from the USDA annual yield data.

The historical yield was calculated based on data starting in 2001 to until the year before (Historical yield

for 2010 would be the average from 2001-2009, for example).
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The first step in pre-processing GEE remote sensing data was to aggregate the spatial data over

our areas of interest using US county shapefiles. Since the NASS Cropland Data Layer (CDL) became

available in 2007 for the regions of this study, and data was only used going back to 2008, the CDL was

used as a crop mask to only include land under corn production. Since many of the remote sensing data

from GEE were time-series, daily data was aggregated into 13 intervals, each 16 days long. After

time-series aggregation, some periods were still missing values and were filled with column averages to

ensure that no null values made it through to the models.

Lastly, the many datasets were compiled into one. This full dataset included the following static

data: Measured Yield, Year, County ID, Historical Yield, Mean CEC, Mean SOM, and Mean AWC. It also

included the following time-series data, with 13 periods for each: Min VPD, Max VPD, Min Temp, Mean

Temp, Max Temp, Precipitation, Mean NDVI, Mean NDWI, Mean GCI, and Mean EVI. This resulted in a

total of 137 features. This complete dataset could then be split into training/testing data in various ways to

create and evaluate predictive models. One way that the data was split was by selecting one year to

evaluate the model on, and using all previous years to train the model. This method was able to show

how the model performed against the different conditions that each year brought, such as drought in 2012

and heavy precipitation in 2009. This also mimics the way that the model would be used in the real world,

predicting one year at a time based on all of the historical training data available.

4.2.3 Model Implementation

Models were constructed in Jupyter Notebook using Python and Scikit-learn libraries. The construction of

models followed the following form:

model_variable = model_function(parameter_1,... parameter_n)

model_variable.fit(train_x, train_y)

prediction = model_variable.predict(test_x)

The first line sets the parameters of the model, if a parameter value is not specified it remains at

the default value, which is set by Scikit-learn. Parameters for each model were tuned manually, with

model accuracy assessed using RMSE, MAPE, and R2 for 2021 yield prediction. The second line of code

fits the training inputs (Climate data, soil data, and vegetation indices) to the training outputs (known

historical yields) using the model. Models were trained with all years between 2008 and the testing year.

For example, if the model is predicting 2021’s corn yield, all years from 2008 to 2020 would be used to

train the model. The third line of code generates the predicted values for the test year using the same

input variables as the training data. These predicted values are what are used to evaluate the model.
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4.3 Use

This model would be used by a government agency such as USDA to create and disperse crop

yield estimates throughout the growing season. These results would likely be displayed on a website in a

visual form such as a yield map like the one shown in figure 5. The updating and maintenance of the

model, as well as details regarding the dissemination of predictions, are both outside the scope of this

project.

Figure 5: Map depicting 2021 predicted corn yield by a ridge regression model.
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5. Evaluation

5.1 Overview

The models were evaluated by comparing predicted yields against reported yield values from

USDA. Models were evaluated based on R2, MAPE, and RMSE. Models were initially optimized and

evaluated using 2020 and 2021 for testing data and training 2008-2019 for training data. Secondly, each

year from 2012 to 2021 was individually evaluated by using it as the test years, and using all years prior

(back to 2008) as training data. This evaluation was intended to show how the various models performed

over time and in the various conditions that accompanied each year. Lastly, the models were evaluated

for intra - season prediction accuracy, by training and testing the models based on only what data would

be available at any given point throughout the growing season. Lastly, a variable importance analysis was

performed on a selected model to identify which input factors the model weighted heavily in its

predictions.

5.2 Testing and Results

The Ridge Regression and Random Forest models generally outperformed the Support Vector

Regression and Multi-Layer Perception models by a significant margin. Using the years 2020 and 2021 as

testing data and 2008-2019 for training, Ridge and RF achieved R2 values of around 0.85 while SVR and

MLP were near 0.75 (Table 1). These predictions used time-series data available prior to the 277th

Day-of-Year, meaning that these predictions would be available on October 4th..

Model Type

Ridge

RF

SVR

MLP

R2 MAPE RMSE

0.86

0.84

0.76

0.73

9.10

9.19

12.17

13.10

15.57

16.47

20.16

21.34

Table 1. The three metrics used to evaluate the corn yield prediction of the four models for 2020 and
2021. The model's outcomes were evaluated using R2, MAPE, and RMSE.

Intra-season predictions were calculated using only the data that would be available prior to

selected dates throughout the growing season. The 2014-2021 average correlation coefficients of the

model predictions throughout the growing season are shown in figure 6. The two models show a similar

pattern of increasing R2 over time until approaching maximum accuracy and plateauing around August

3rd (DOY 215).
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Figure 6. 2014-2021 avg. R^2 values of two models (Ridge and Random Forest)
throughout the growing season.

As part of the evaluation, a variable importance analysis was performed to identify which features

affected corn yield the most. As seen in Table 1, NDVI was by far the most powerful predictor of corn

yield, with precipitation and historical yield being the second and third best predictors.

Figure 7: The top 5 variables that were found to have the most feature importance in
the random forest model. NDVI was found to be the most useful by a large margin in
predicting crop yield.
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5.3 Sustainability

The use of this model has significant environmental impacts. If the model produces accurate

predictions and allows corn farmers and corn ethanol producers to make more educated decisions, their

processes could be made more efficient. This could reduce environmental degradation if farmers can use

less water and fertilizer inputs to produce similar yields, or if corn ethanol producers can produce more

renewable fuels because of more predictable corn markets.

This project can vastly improve economic conditions for many people and industries. For farmers,

the model could help them make the best use of their resources by making well-informed decisions. This

could result in increased profits for farmers. Additionally, the use of this model could help inform

decision-making abilities of industries that depend on corn production, increasing efficiency and boosting

profits. Industries that could see significant economic impacts include crop insurers, commodities traders,

food manufacturers, and corn ethanol producers.

Lastly, this project will improve social sustainability. The accurate predictions that it provides will

help policymakers manage food supply across the globe and give them time to react to any anticipated

food shortages. This could improve health outcomes both domestically and around the world. Since the

model’s predictions will be free and available to everyone, it will reduce inequality by allowing even the

smallest of corn farmers access to high-quality predictions. This will help farmers sustain their businesses

and way of life.

While this project could improve environmental, economic, and social sustainability with accurate

corn yield predictions, inaccurate predictions could cause significant damages. It is important that the

inherent risk or relying on predictive models is communicated to users so that the model can be used

responsibly.
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5.5 Safety Analysis

The two ways the selected corn yield model could fail is through underpredicting or over

predicting yield. Underpredicting yield could result in farmers having a lack of resources to manage crops.

If more crops survive throughout the growing stage, there might not be enough water, fertilizer and

pesticides to properly manage them. If there is insufficient storage for the extra yield, these crops could

spoil. Over predicting yield could result in farmers losing profits from harvesting as much less corn than

expected. It could result in them purchasing more resources than needed to manage their crops.

Farmer’s income is dependent on their yield, so it is essential that the model’s predictions are accurate.

Using MAPE as a metric, the selected model's output was over 70% accurate. Creating models with

higher accuracy will prevent these errors in yield prediction. Disclosing that the errors in predictive models

will allow farmers to understand the uncertainties in these model outputs.

6. Assessment

6.1 Summary

Crop predictive models promote food security by providing valuable information to producers.

With a changing climate, variations in crop yield factors have significant impacts on crop production.

Machine learning models have significant predictive power to combat these uncertainties. Multiple models

were constructed to predict corn yield on a county level for the midwest including random forest, ridge

regression, multilayer Perceptron, and Support Vector Regression. Various yield predictive factors were

inputted into the models to provide the models with essential information. Past corn yield data from the

National Statistics Service and vegetation index and soil remote sensing data from Google Earth engine

were included in the model inputs. The desired model output was 70% accuracy, calculated from MAPE.

All four of the models outperformed this accuracy goal. Ridge regression had the greatest accuracy with a

90.9% mean accuracy, an R2 value of 0.86, and an RMSE of 15.57. It is crucial that the crop predictive

models output accurate data to ensure farmers and policymakers can utilize the data to combat the food

security crisis.

6.2 Next Steps

While this model was very successful in producing accurate corn yield predictions based on only

free and publicly-available data, there is room for models like this to be even better. The model is very

accurate in predicting years with fairly standard weather, but the model is not as accurate in predicting

outliers such as the 2012 drought year. A higher number of sample years would give the model more data

to base predictions on, so the accuracy will increase over time as more training data is made available.

Another room for improvement is that null values in the training set could be filled with better methods,
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such as interpolation, to increase model accuracy. Looking forward, weather predictions could be

implemented into the predictive models to account for the impacts of future events on corn yield.
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8. Appendices

Appendix A - Data Sources

Data from the USDA was utilized to construct the models. The USDA two-level surveys provide state and

national yield estimates (Johnson, 2014). To obtain data for these surveys, the USDA conducts telephone

interviews with farmers during the row crop growing season from August to November (NASS).

Google Earth Engine provided vegetation index and soil remote sensing data. Crop-specific land cover

data is created annually for the continental United States through the Cropland Data Layer (CDL). CDL is

composed of satellite imagery and ground truth data collected from the USDA, the National Statistics

Service, Research and Development Division, Geospatial Information Branch, and Spatial Analysis

Research Section (Google Earth Engine).

Appendix B - Design Alternatives

Convolutional Neural Network (CNN): This type of deep neural network was specially designed to process

spatial imagery data, such as remote sensing data (Kang et al., 2020). Neural networks have an input

layer, multiple hidden layers, and an output layer. Every input is connected to every node in the hidden

layer, where the network learns the strength of each connection. When utilized properly CNN is accurate

and its ability to be used on spatial imagery is especially applicable for remote sensing data that will be

used in estimating corn yield (Kattenborn et al., 2021). Neural networks require training which makes

them more difficult to implement.

Multilayer Perceptron (MLP): Multilayer Perceptron is a simplistic neural network that makes no

assumptions of data distribution and can model nonlinear data. MLP has multiple layers of perception and

is a feed-forward model. A feed-forward model has data inputted into the input layer and the layer’s

output is scaled and fed forward as an input to the next layer. (Gardner, 1998). The model works similarly

to the shallow neural network displayed in figure 2. MLP is built up of several nodes in the input layer and

hidden layer, while one node is in the output layer with connections between the nodes. The connections

are weights between the nodes. They scale the outputs of the node to the input of the next node. The

number of nodes and connections can vary for each problem but adding too many nodes/connections can

cause overfitting while having too few connections/nodes provides insufficient information for the model to

create an accurate solution (Ramchoun, 2016). Multilayer Perceptron is used in applications for image

and speech recognition (Yemelyanov et al., 2020).

Long-Short Term Memory (LSTM): LSTM is a modified recurrent neural network (RNN). A recurrent

neural network loops the output from a hidden layer node back into itself during the next iteration
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“remember” its previous state. LSTM remembers and updates its memory each iteration, adding new

information and “forgetting” what it determines to be irrelevant. LSTM is useful when working with

time-related data and non-linear fits (Tian et al., 2021).

Random Forest (RF): Random Forest is a supervised machine learning model that randomly selects a set

number of features (Temperature, Precipitation, Soil Data, etc.) from a list to build decision trees. Layers

of decision trees are built to create the “Forest” (Breiman, 2001). Training data is required to teach the

model the relationship between features and known outputs. Once trained the model will output predicted

values when given feature values. The output of each tree is averaged for regression or the most popular

designation is chosen for classification. RF has been used commonly with remote sensing data (Breiman,

2001).

Ordinary Least Squares (OLS): OLS is the most well-known linear model, where root sum squared (RSS)

is minimized to find the best-fit equation for the data given. This model is particularly simple and easy to

implement, however, it is most effective with small samples and few outliers (Finger 2010). For this

reason, it is considered the least desirable model for this project.

Ridge Regression: This model is a modified version of OLS regression where it minimizes MSE instead of

RSS by adding a second term to RSS that reduces overfitting (Bolton and Friedl, 2013). Ridge regression

is superior to linear regression in applications where several variables are similarly predictive of the

output.

Support Vector Regression (SVR): SVR is a regression model that sets an “acceptable” deviance from a

hyperplane, and the model maximizes the number of points within the set threshold. SVR uses Support

Vector Machines to define a hyperplane. A hyperplane is simply a plane one dimension smaller than the

actual plane, so the hyperplane of a 3D space is a 2D surface. In the context of SVR, the hyperplane is

used to separate objects of different classifications. The optimized hyperplane equation is used to predict

the output in this model (Kang et al., 2020).

Appendix B.1 - Selection Methodology

The models selected were chosen based on their accuracy in previous studies and if they were available

in Scikit-learn libraries. Multilayer Perceptron, Random Forest, Ridge Regression and Support Vector

Regression met these criteria.
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Appendix B.2 - Model Type Evaluation Criteria:

Computational Ease: Describes how difficult it is to manipulate the data for use in the model.

Implementational Ease: Defines how difficult it is to understand and run the model. Models that require

training data or complex construction are less desirable.

Accuracy: How well the models can predict outcomes, overall. Accuracy will vary with data type and

application, however, some models typically perform better than others.

Applicability: How well the function of each model fits the intended use. For example, a model that can

handle several parameters is more applicable to the project.

Weights: An accurate predictive model is the primary goal of our project and is the most important

consideration in choosing a model. Computational and implementational ease describe the time and effort

required to use certain models, which is a minor design consideration in comparison to accuracy.

Applicability is also considered lesser than accuracy.

Design Matrix

A higher value is more desirable (1-poor, 10-excellent)

Criteria: Weight MLP LSTM RF OLS Ridge SVR

Computational
ease

0.2 5 6 7 9 8 6

Implementational
ease

0.2 4 4 5 9 8 7

Accuracy 0.4 8 8 6 2 4 7

Applicability 0.2 6 6 6 2 5 4

Weighted Sum 6.2 6.4 6 4.8 5.8 6.2

Long-Short Term Memory has the greatest weighted sum score, however, CNN, RF, Ridge, and SVR all

had similar scores to LSTM. OLS was the greatest outlier in weight sum, scoring much lower than the

other models. Due to the lack of a clear best option, we have decided that utilizing multiple models is the

best option. LSTM, CNN, RF, Ridge, and SVR will all be used to predict the corn yield for the 12

midwestern states. The accuracy of each model’s prediction will be analyzed, with the strongest one

eventually being implemented. The extra effort required to create several yield models is required to

ensure the greatest accuracy, which allows the users of the final product to make the best decisions.
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There are numerous other decisions that need to be made in the design and creation of a

machine-learning model. This includes considerations such as the following:

Types of Input Data - The performance of the models will depend heavily on the input data that is used.

Many of the possible data inputs are outlined in the Technical Review and Design Requirements sections

of this report. This project requires iteration and optimization of the predictive models, and input data will

be included based on the resultant model performance. For that reason, specific data sets are not

evaluated in this section and instead will be evaluated in the model itself.

Programming Language - Python has been selected as the language to use for this project, on the

recommendation of our client and its widespread use for such projects. Our client has also recommended

that scikit-learn Python libraries are used, which will provide useful tools to streamline the implementation,

iteration, and evaluation processes.

Visualization Tool - QGIS has been selected as the visualization tool for creating yield maps. It was

recommended by the client and provides all of the functions necessary to efficiently generate yield maps

that can contrast the results of the various models against each other and actual yield data. Additionally,

the application is free to use.

Date Range for Input Data - Growing season-only data will be used for the model. While non-growing

season data can provide some information, our client advised that the majority of the predictive power

comes from data gathered during the growing season. For example, weather in winter generally has little

effect on crop yields.

The most ethical and sustainable model is the most accurate model. As outlined in the technical review,

the ability to predict corn yields benefits farmers, food security, the economy, and the environment. A

model that will predict future corn yields as accurately as possible will be the most sustainable, safe, and

ethical design alternative.
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